

ASP.NET 2.0
Instant Results

Imar Spaanjaars, Paul Wilton, and Shawn Livermore

01_749516 ffirs.qxp 2/16/06 5:57 PM Page i

01_749516 ffirs.qxp 2/16/06 5:57 PM Page i

ASP.NET 2.0
Instant Results

Imar Spaanjaars, Paul Wilton, and Shawn Livermore

01_749516 ffirs.qxp 2/16/06 5:57 PM Page i

ASP.NET 2.0 Instant Results
Published by
WWiilleeyy PPuubblliisshhiinngg,, IInncc..
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-471-74951-6
ISBN-10: 0-471-74951-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1MA/QS/QT/QW/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sec-
tions 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Pub-
lisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission
should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN
46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

LLIIMMIITT OOFF LLIIAABBIILLIITTYY//DDIISSCCLLAAIIMMEERR OOFF WWAARRRRAANNTTYY:: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAP-
PEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

LLiibbrraarryy ooff CCoonnggrreessss CCaattaalloogg NNuummbbeerr:: 2006003345

TTrraaddeemmaarrkkss:: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

FCKeditor–The text editor for the Internet. Copyright © 2003-2006 Frederico Caldeira Knabben. Licensed
under the terms of the GNU Lesser General Public License (LGPL).

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

01_749516 ffirs.qxp 2/16/06 5:57 PM Page ii

www.wiley.com

iii

About the Authors
IImmaarr SSppaaaannjjaaaarrss graduated in Leisure Management from the Leisure Management School in the
Netherlands, but quickly changed his career path into the Internet world. After working for a large cor-
poration and doing some freelance work, he is now working for Design IT, an IT company in the
Netherlands that specializes in Internet and Intranet applications built with Microsoft technologies like
ASP.NET. As a software designer and lead developer, he’s responsible for designing, building, and
implementing medium- to large-scale e-commerce web sites and portals.

Before this book on ASP.NET 2.0, Imar wrote two books about Macromedia Dreamweaver, called
Beginning Dreamweaver MX and Beginning Dreamweaver MX 2004, both published under the Wrox brand.
Imar is also one of the top contributors to the Wrox Community Forums at http://p2p.wrox.com
where he shares his knowledge with fellow programmers.

Imar lives in Utrecht, the Netherlands, together with his girlfriend Fleur. You can contact him through
his web site at http://imar.spaanjaars.com.

PPaauull WWiillttoonn got an initial start as a Visual Basic applications programmer at the Ministry of Defense in
the UK before finding himself pulled into the Net. Having joined an Internet development company, he
spent three years helping create Internet solutions. He’s now running his own company developing
online holiday property reservation systems.

Paul’s main skills are in developing web front ends using DHTML, JavaScript, and VBScript as well as
back-end solutions with ASP, ASP.NET, Visual Basic, and SQL Server.

SShhaawwnn LLiivveerrmmoorree (MCAD, MCSD, PMP) [shawnlivermore.blogspot.com] has been architecting and
developing Microsoft-based solutions for nearly a decade. Shawn consults as an architect for Fortune
500 clientele, leveraging time-proven methodologies and exceptional communications, within highly
visible projects. His range of technical competence stretches across platforms, but specializes within
Microsoft .NET development and server-based products such as Biztalk and SQL Server, among others.
His experience implementing enterprise-level Microsoft solutions is extensive and has led to successful
business ventures with numerous firms. Shawn lives in the Southern California area with his beautiful
wife Shantell and amazing daughter Elexzandreia.

01_749516 ffirs.qxp 2/16/06 5:57 PM Page iii

Credits
Senior Acquisitions Editor
Jim Minatel

Development Editor
Brian Herrmann

Technical Editors
Dan Maharry and Scott Spradlin

Production Editor
Felicia Robinson

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator
Michael Kruzil

Graphics and Production Specialists
Lauren Goddard
Brooke Graczyk
Denny Hager
Joyce Haughey
Barbara Moore
Alicia B. South

Quality Control Technicians
Jessica Kramer
Brian Walls

Media Development Project Supervisor
Shannon Walters

Media Development Specialist
Steven Kudirka

Proofreading and Indexing
TECHBOOKS Production Services

01_749516 ffirs.qxp 2/16/06 5:57 PM Page iv

Imar Spaanjaars: To Fleur - The love of my life.

Shawn Livermore: This book is dedicated to my Lord Jesus, who has mastered all things, much
less a simple piece of software.

Paul Wilton: With lots of love to my darling Beci, who now the book’s finished will get to see
me for more than 10 minutes a week.

Acknowledgments

Imar Spaanjaars
Writing a book like this one is definitely not a solo project. During development of this book I got a lot of
support from many people who helped me to stay focused and get inspiration. I would like to give all of
you that helped a big thanks! While I can’t possibly thank all of you here personally, there are a few peo-
ple I’d like to thank in particular.

First of all I’d like to thank the people at Wiley for working with me on this project, with Brian
Herrmann in particular for his efforts during the editorial process.

I would also like to thank Anne Ward for helping me with the designs of some of the applications fea-
tured in this book.

A big thanks goes out to the people at Design IT for their participation in my “hallway usability tests”
that I randomly brought up in the office. Thanks guys! It’s always good to have a few extra sets of eyes.

My appreciation also goes out to my two good friends René and Joost for their friendship. Looking for-
ward to spending more time with you again.

Last but certainly not least, I would like to thank my girlfriend Fleur for her support during this project.
I know it wasn’t always fun when I disappeared in my home office for hours, but you were a great sup-
porter and motivator nonetheless.

IImmaarr SSppaaaannjjaaaarrss ccoonnttrriibbuutteedd CChhaapptteerrss 55,, 66,, aanndd 88––1122 ttoo tthhiiss bbooookk..

01_749516 ffirs.qxp 2/16/06 5:57 PM Page v

vi

Acknowledgments

Paul Wilton
I’d like to say a very big thank you to Brian Herrmann, who has been a great editor to work with and
has done amazing work on the book. He manages to maintain professionalism and sense of humor even
when faced with another of my “just a few more days and I’ll get the chapter to you” e-mails!

Thanks also to Jim Minatel for making this book happen, and also his support in what has for me been a
challenging and difficult year.

Many thanks to everyone who has supported and encouraged me over the many years of writing books.
Your help will always be remembered.

Finally, pats and treats to my German Shepherd Katie, who does an excellent job warding off distur-
bances from door-to-door salespeople.

PPaauull WWiillttoonn ccoonnttrriibbuutteedd CChhaapptteerr 11 ttoo tthhiiss bbooookk..

Shawn Livermore
I thank my gorgeous wife Shantell, who is a truly beautiful and caring person, and has always encour-
aged me to shoot higher. Your love has changed my life. Thanks for supporting me through the long
hours and boring computer nerd conversations. I owe you a pair of Gucci shoes. And of course, to my
daughter Elexzandreia, who is a gift from heaven. You have taught me so much about life and have
made me want to be a better dad. I love you “134,000.”

SShhaawwnn LLiivveerrmmoorree ccoonnttrriibbuutteedd tthhee IInnttrroodduuccttiioonn aanndd CChhaapptteerrss 22––44 aanndd 77 ttoo tthhiiss bbooookk..

01_749516 ffirs.qxp 2/16/06 5:57 PM Page vi

Contents

Acknowledgments v
Introduction xvii

Chapter 1: The Online Diary and Organizer 1

Using the Online Diary 1
Design of the Online Diary 6

The Data Access Layer 6
The Business Layer 8

The OnlineDiary Class 8
The Contact Class 8
The ContactCollection Class 10
The DiaryEntry Class 11
The DiaryEntryCollection Class 13
The DiaryEvent Class 14
The DiaryEventCollection Class 16

Code and Code Explanation 17
File Structure 17
Registration, Logging On, and Security 18

Logging On 18
New User Registration 19
Password Reminder 23

Viewing the Online Calendar 24
Creating, Editing, and Viewing a Diary Entry 26
Creating, Editing, and Viewing Diary Events 29
Managing Contacts 32

Setting up the Online Diary 34
Summary 35

Chapter 2: Wrox File Share 37

Using the Wrox File Share 38
Wrox File Share Design 41

Uploading Files 41
Sending E-Mails 42
Structure of the Site 43

02_749516 ftoc.qxp 2/10/06 9:10 PM Page vii

viii

Current HeadContents

Data Model and Database Objects 44
The Email Table 44
The Contact Table 44
The Resource Table 45

Themes and Skins 50
Security Model 51
Classes Involved 52

The EmailContent Class 52
The Resource Class 53
The Config Class 54
The Utilities Class 55

Code and Code Explanation 55
Root Files 56

Web.config 56
config.vb 56
Resource.vb 58
resourceDB.vb 59

WebForms 62
Default.aspx 62
Login.aspx 63
Download.aspx 64

User Controls 65
header.ascx 65
footer.ascx 66
navigation.ascx 66

Setting up the Project 67
Hosted Web Site Installation 67
Local Developer Installation 68

Summary 69

Chapter 3: Wrox Chat Server 71

Using the Wrox Chat Server 73
Wrox Chat Server Design 75

Sending Messages Using Callbacks 75
Structure of the Site 78
Data Model 78

The Category Table 79
The Room Table 79
The Message Table 80
The User Table 80

02_749516 ftoc.qxp 2/10/06 9:10 PM Page viii

ix

Current HeadContents

Themes and Skins 80
Classes Involved 81

The ChatRoom Class 81
The ChatRoomDB Class 82
The Config Class 83

Code and Code Explanation 84
Root Files 84

Web.config 84
Config.vb 84
ChatRoom.vb 85
ChatRoomDB.vb 86

WebForms 88
SignIn.aspx 88
Default.aspx 88
ChatRoom.aspx 90
ChatWindow.aspx 92

User Controls 94
header.ascx 95
footer.ascx 95
navigation.ascx 95

Setting up the Project 96
Hosted Web Site Installation 96
Local Developer Installation 96

Summary 97

Chapter 4: Wrox Survey Engine 99

Using the Wrox Survey Engine 100
Adding a New Survey 105
Editing an Existing Survey 109

Wrox Survey Engine Design 110
Object Binding and SQL Server Data Binding 110
Structure of the Site 111
Data Model and Database Objects 112
Themes and Skins 115
Security Model 116
Classes Involved 117

The SurveyBase Class 117
The Survey Class 118
The SurveyDB Class 120
The Config Class 121

02_749516 ftoc.qxp 2/10/06 9:10 PM Page ix

x

Current HeadContents

Code and Code Explanation 122
Root Files 122

Web.config 122
Survey.vb 122
Config.vb 123
SurveyDB.vb 124

WebForms 126
Default.aspx 126
Login.aspx 126
TakeSurvey.aspx 126

User Controls 127
header.ascx 127
footer.ascx 128
navigation.ascx 128
surveyresults.ascx 129
currentsurvey.ascx 130

Setting up the Project 130
Hosted Web Site Installation 131
Local Developer Installation 131

Summary 132

Chapter 5: Wrox CMS 133

Using the Wrox CMS 133
Viewing Content on the Site 134
Managing Content with the CMS 135

Design of the Wrox CMS 136
The Business Layer 137
The Data Access Layer 139

The Data Model 139
Helper Class 140

Code and Code Explanation 141
Root Files 141

Web.config 141
SiteMaster.master and AdminMaster.master 142
Login.aspx 146

The Management Folder 146
Managing Categories 146
Managing Content 153

Displaying Content on the Web Site 159
Setting up the Wrox CMS 162

Using the Installer 162
Manual Installation 162

02_749516 ftoc.qxp 2/10/06 9:10 PM Page x

xi

Current HeadContents

Changing IIS Settings 162
Changing Security Settings 163
Testing Out the Site 164

Summary 165

Chapter 6: Wrox Blog 167

Using the Blog 168
Design of the Wrox Blog 170

The Business Layer 170
The BlogEntry Class 171
The BlogManager Class 172
The UserManager Class 173

The Data Access Layer 174
The BlogManagerDB Class 176
The UserManagerDB Class 177
The Data Model 178
Stored Procedures and Queries 179

Helper Classes 180
Code and Code Explanation 181

Root Files 181
Web.config 181
Login.aspx 181
Global.asax 184

Writing Provider-Independent Code 185
The Controls Folder 188

BlogEntriesFilter.ascx 188
BlogEntries.ascx 191

Structured Error Handling and Logging 198
Configuration 198
Handling and Logging Errors 198

Setting up the Wrox Blog 200
Using the Installer 200
Manual Installation 201

Summary 203

Chapter 7: Wrox Photo Album 205

Using the Wrox Photo Album 206
Wrox Photo Album Design 211

How It All Fits Together 211
Storing Images 212
Displaying Images 212

02_749516 ftoc.qxp 2/10/06 9:10 PM Page xi

xii

Current HeadContents

Site Structure 213
Themes and Skins 214
Data Model 216
Security Model 217

Classes Involved 218
Code and Code Explanation 221

Root Files 222
Web.config 222
Masterpage.master and Admin.master 222
Web.sitemap 223

WebForms 223
Photos.aspx 223
Login.aspx 224
Admin.aspx 225
Editphotos.aspx 227

Secure Area Files 228
User Controls 229

header.ascx 229
footer.ascx 229
navigation.ascx 229

Setting up the Project 230
Hosted Web Site Installation 230
Local Developer Installation 231

Summary 232

Chapter 8: Customer Support Site 233

Using the Customer Support Site 233
Design of the Customer Support Site 235

The Business Layer 236
The ContentBase Class 236
The Product Class 237
The Download Class 239

The Faq Class 239
The Category Class 241
The Data Access Layer 241

The ProductDB Class 242
The DownloadDB Class 243
The FaqDB class 243
The CategoryDB class 243
The Data Model 244
Stored Procedures and User-Defined Functions 247

Helper Classes 247
The AppConfiguration Class 247

02_749516 ftoc.qxp 2/10/06 9:10 PM Page xii

xiii

Current HeadContents

Code and Code Explanation 248
Root Files 248

Web.config 248
Global.asax 248
Default.aspx 248
Master Pages 249
Other Files and Folders 250

The Product Locator 251
The Downloads List 256
Searching Frequently Asked Questions 262
The Customer Support Site CMS 268

Categories.aspx 268
The List Pages 268
The Create and Update Pages 269

Setting up the Customer Support Site 269
Using the Installer 269
Manual Installation 270
Using the Customer Support Site 270

Summary 271

Chapter 9: Wrox WebShop 273

Using the WebShop 273
Navigating the WebShop 274
Maintaining the WebShop Product Catalog 276

Design of the WebShop 277
The Business Layer 277

Product 277
OrderedProduct 279
ShoppingCart 280
ShopManager 281
Customer 283

The Data Access Layer 284
The Data Model 284
ShopManagerDB 287

Helper Classes 288
Code and Code Explanation 289

Root Files 289
Global.asax 289
Web.config 289
MasterPage.master 291
Default.aspx 292
Login.aspx 292
UserDetails.aspx 293

02_749516 ftoc.qxp 2/10/06 9:10 PM Page xiii

xiv

Current HeadContents

The Shop Folder 293
Displaying Products 294
Adding a Product to the Cart 296
The ShoppingCart.aspx Page 297
Changing Items in the Cart 298
Finalizing Orders 301

The Management Folder 306
Setting up the WebShop 307

Using the Installer 307
Manual Installation 307
Modifying Security Settings 307
Changing E-mail Settings 309
Managing Products 309

Summary 309

Chapter 10: Appointment Booking System 311

Using the Appointment Booking System 311
Maintaining the Appointment Booking System 312
Making Appointments with the Appointment Booking System 314

Creating an Account 314
The Availability Checker 314
The Appointment Wizard 315

Design of the Appointment Booking System 316
The Business Layer 316

BookingObject 316
BookingObjectManager 317
Appointment 318
AppointmentManager 320
Weekdays 321

The Data Access Layer 322
BookingObjectManagerDB 322
AppointmentManagerDB 322
The Data Model 323

Helper Classes 324
AppConfiguration 324
Helpers 325

Code and Code Explanation 325
Web.config 325
Global.asax 326
Default.aspx 326

02_749516 ftoc.qxp 2/10/06 9:10 PM Page xiv

xv

Current Head

Master Pages 326
Other Files and Folders 326

The Availability Checker 327
The Appointment Wizard 334
The Sign Up Page 340
The Management Section 342

Saving Configuration Information 342
Managing Booking Objects 344
Viewing Appointments 345

Setting up the Appointment Booking System 349
Using the Installer 349
Manual Installation 349
Configuring the Application 350

Summary 350

Chapter 11: Greeting Cards 351

Creating Your Own Greeting Card 352
Design of the Greeting Cards Application 355

The Toolkit 356
The Imaging Class 356
The UploadHandler Class 358

Helper Classes 361
The FileHandlingEventArgs Class 361
AppConfiguration 361

Code and Code Explanation 362
The Host Page 362
Uploading and Resizing Images 366

Uploading Files 367
Resizing Images 369

Rotating and Flipping Images 372
Cropping Images 374
Adding Text to Images 379
Sending E-Mail with Embedded Images 384

Setting up the Greeting Card Application 386
Using the Installer 387
Manual Installation 387
Configuring the Application 387

Configuring Security Settings 387
Configuring the Mail Server 389

Summary 390

Contents

02_749516 ftoc.qxp 2/10/06 9:10 PM Page xv

xvi

Current Head

Chapter 12: The Bug Base 391

Using the Bug Base 392
Design of the Bug Base 396

The Business Layer 397
Bug 397
BugManager 399
BugComparer 400
CommentManager 400
ListManager 400
MemberManager 402
NameValue 402
SearchCriteria 402

The Data Access Layer 403
BugManagerDB 407
CommentManagerDB 408
ListManagerDB 409
MemberManagerDB 410

Code and Code Explanation 410
Root Files 410

Web.config 410
MasterPage.master 412
Global.asax 413
Web.sitemap 413

Filing a Bug 413
Searching and Viewing Bugs 423
Other Files and Folders 433

Setting up the Bug Base 435
Using the Installer 435
Manual Installation 435
Browsing to the Bug Base 436

Summary 436

Index 439

Contents

02_749516 ftoc.qxp 2/10/06 9:10 PM Page xvi

Introduction

For all of the programmers out there who just love a good .NET book to get them up and running fast in
a new technology, you are in luck. ASP.NET 2.0 Instant Results is the perfect fast-track book for the pro-
grammer or architect to pick up on the new features and tools available in the 2.0 version of ASP.NET.
Sure, you could read a traditional book, and spend countless hours guessing what you really have to do
in order to get the software to work properly—or you could simply use the materials in the following
chapters to understand and test the example projects provided in a short amount of time.

Some of the compelling reasons to produce this book are tied to the incredible reviews about the 2.0 version
of the .NET Framework, along with the development advancements seen within the Visual Studio 2005
environment. ASP.NET 2.0 is a hot technology, poised for rapid adoption and growth compared to the 1.1
version, thanks to some exciting features that focus on providing web developers with the tools they need
for the majority of their development projects. These must-haves include the new login controls, which
enable developers to quickly drag and drop a set of controls on the design surface, set a few properties, and
have a near-instantaneous security system. Another new feature is the enhancements to the design-time
user interfaces for binding data controls. A wizard-like aspect surrounds most of the controls, which are in
fact very easy to operate. Other exciting controls exist, but they are not the end of the story. A vast amount
of changes has been planted within ASP.NET 2.0, involving the architecture of sites, speed of page requests,
management of stateful information, and efficiency of development overall. Sound too good to be true?
Well, if you are taking on ASP.NET 2.0, your programming effort just got a whole lot easier.

Who This Book Is For
This book is ideal for any programmer with .NET experience to learn the new technology. Anyone who
has experimented with .NET 1.1 or implemented full-scale solutions for their employers would be a per-
fect candidate to easily absorb all of the materials within this book. You should have some general
understanding of how a basic database works, with experience in developing software to access a
database object such as a stored procedure.

For a beginner, you may want to skip over to Chapter 7. This chapter is very lightweight in design,
aimed at providing a simplistic approach to a very common web site style. That is, the family photo
album web site. This chapter explains the basic concepts of sharing photos within a web site and adding
and deleting photos. It would be a great way to catch the basic concepts early on, before diving into
more complicated site designs and concepts within the book.

The best approach for advanced readers is to find a chapter that interests you, and skip right to it. No
ground is lost by moving through this reference book of geniuses (shameless plug). It is meant to be a
helpful guide and a reference quick-start for diving deep into working code, in an attempt to learn it
rapidly. Each chapter is almost completely self-contained and is a completely different implementation
of various overlapping features. Some chapters may repeat a concept for a redundant and thorough
learning process, whereas others may divert from the consistent features and usages in order to provide
a broad approach to the site’s unique requirements. In some cases, where you require a full explanation
of a topic that has previously been discussed, you’ll find a reference to an earlier chapter that describes
that topic in great detail.

03_749516 flast.qxp 2/10/06 9:10 PM Page xvii

xviii

Current HeadIntroduction

What This Book Covers
The book contains a dozen projects you can use right off the disk with minimal setup needed. Each pro-
ject has step-by-step instructions on installing the source code to your local machine. The goal of the
chapter and accompanying project code is to enable you to understand and quickly modify the project to
enhance its capabilities or to learn how to implement some of the features it uses within different situa-
tions. Through the repeated studying of simple project walkthroughs and hands-on experimentation,
you learn more about the design and creation of full projects in the 2.0 version of ASP.NET. The book ref-
erences some of the advancements since the older version 1.1, but not to any level of detail. Most of the
logic and material is gauged toward explaining the deeper concepts within the 2.0 version in its entirety.

How This Book Is Structured
This book is designed in similar fashion to other Wrox Press Instant Results titles, in that it serves as
more of a reference manual of usable and instructional source projects, as compared to a traditional end-
to-end book. This is because most programmers do not need to absorb all of the available information on
a particular subject in a traditional fashion. Many times, programmers are looking to find the answers
within the code, and then read content or material on it as an afterthought. This book aims to satisfy this
tendency, but not at the expense of providing quality information and useful instruction at the same
time. Thus, the topics and concepts that must be learned are taught from basic to advanced forms, across
all of the 12 projects, with overlapping tools and features to drive home the concepts.

The structure of each chapter follows the following general pattern:

❑ Overview—What does this project do?

❑ Design

❑ Code and code explanation

❑ Setting up the project

Each project is designed with reusable controls, class files, and/or modules. Classes and noteworthy
project files are highlighted and analyzed with sufficient information in each chapter to make the
research effort as easy as possible.

The chapters of the book, and consequently the source projects used within the book, are as follows:

❑ Chapter 1: The Online Diary and Organizer

❑ Chapter 2: Wrox File Share

❑ Chapter 3: Wrox Chat Server

❑ Chapter 4: Wrox Survey Engine

❑ Chapter 5: Wrox CMS

❑ Chapter 6: Wrox Blog

❑ Chapter 7: Wrox Photo Album

❑ Chapter 8: Customer Support Site

03_749516 flast.qxp 2/10/06 9:10 PM Page xviii

xix

Current Head

❑ Chapter 9: Wrox WebShop

❑ Chapter 10: Appointment Booking System

❑ Chapter 11: Greeting Cards

❑ Chapter 12: The Bug Base

The easier chapters to pick up and learn might include Chapters 4, 7, and 9, whereas Chapters 3, 10, and
12 all provide advanced topics you will be sure to learn from.

At the end of your studies, you will be able to create your own site from scratch, implementing security,
a structured architecture, profiles, new and more efficient data-bound controls, object-based data bind-
ing, and many more features.

What You Need to Use This Book
The basic software needed to use this book includes Windows 2000 Professional or Windows XP
Professional and an installation of Visual Web Developer Express Edition with SQL Server 2005 Express
Edition. Visual Web Developer Express Edition is available from http://msdn.microsoft.com/vstudio/
express/vwd/. As an alternative to Visual Web Developer Express Edition, you can use one of the full
versions of Visual Studio 2005, including the Standard and Professional editions. It is understood with
the development tools mentioned that the .NET Framework version 2.0 is required to run the project
samples as well.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able on the companion CD-ROM and for download at www.wrox.com. Once at the site, simply locate the
book’s title (either by using the Search box or by using one of the title lists) and click the Download Code
link on the book’s detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
0-471-74951-6 (changing to 978-0-471-74951-6 as the new industry-wide 13-digit ISBN numbering
system is phased in by January 2007).

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another

Introduction

03_749516 flast.qxp 2/10/06 9:10 PM Page xix

xx

Current Head

reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list includ-
ing links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based system
for you to post messages relating to Wrox books and related technologies and interact with other readers
and technology users. The forums offer a subscription feature to e-mail you topics of interest of your
choosing when new posts are made to the forums. Wrox authors, editors, other industry experts, and your
fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register Now link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You’ll find this
book’s own forum under the Books category that is available from the homepage or by clicking View All
Forums on the menu on the left. You can read messages at any time on the Web. If you would like to
have new messages from a particular forum e-mailed to you, click the Subscribe to this Forum icon by
the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

Introduction

03_749516 flast.qxp 2/10/06 9:10 PM Page xx

1
The Online Diary

and Organizer

By the end of this chapter you’ll have created an online diary, organizer, and contacts manager. So
what exactly does the online diary and organizer do? Using a calendar-based interface it allows
you to add, delete, and edit a diary entry for any day. It also allows you to create events: for exam-
ple, to keep a note of your rich Uncle Bob’s birthday — wouldn’t want to forget that, would you?
It’s not just limited to birthdays, but any event: meetings, appointments, and so on.

The system has a basic username and password logon system, so that only you and no one else
can view your own diary. This is what differentiates it from a blog. This system is a private diary
and contacts manager — a place to put all those thoughts and comments you’d rather not have the
world see. Unlike a blog, where you want the world to see it!

This whole project demonstrates the power of ASP.NET 2.0 and how easy it makes creating pro-
jects like this. Gone are the days of hundreds of lines of code to do security logons, create new
users, and so on. This chapter employs the new security components of ASP.NET 2.0 to show just
how easy it is to create fun, exciting, and useful projects.

The first section takes you through using the diary and its main screens. Then, the “Design of the
Online Diary” section walks you through an overview of the system’s design. After that you get
into the nuts and bolts of the system and how it all hangs together. In the final section, you set up
the diary.

Using the Online Diary
Each user has his or her own online diary; to access it requires logging on. Enter username user5
with the password 123!abc to log in as a test user. The log on screen is shown in Figure 1-1.

Although the screenshot may suggest lots of controls and lots of code to make the security func-
tion, in fact with the new security controls in ASP.NET 2.0 it’s very easy and not much work at all.

If you have not registered, a link will take you to the Sign Up page, depicted in Figure 1-2.

04_749516 ch01.qxp 2/10/06 9:11 PM Page 1

Figure 1-1

Figure 1-2

This shows another of the new security controls in ASP.NET 2.0; creating a registration process is now
just a matter of adding a control to a form!

If you’ve forgotten your password, you can click the Forgotten Your Password? link, which directs you
to the Password Reminder wizard pages (see Figure 1-3).

Figure 1-3

Having logged on, you arrive at the main diary page, as displayed in Figure 1-4.

2

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 2

Figure 1-4

On this page you see a monthly calendar. Days with diary entries are marked with a blue background.
Days with events are marked in red text. Notice also on the right that upcoming events are highlighted,
as are recent diary entries.

Clicking on a day moves you through to the area where you can enter your diary entry for that day; and
add, edit, and delete events (see Figure 1-5).

Figure 1-5
3

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 3

You can also navigate your diary from here via the small calendar to the right.

Adding a diary entry simply involves typing in the Entry Title and Diary Text boxes and clicking the
Save Entry button.

Events happening on a particular day are listed in the Events table at the bottom-left of Figure 1-5. You
can edit and delete events, or click the Add New Event link to add a new event. The Edit and Add event
pages are almost identical in look. An example of the Edit Event page is shown in Figure 1-6.

Figure 1-6

In the Edit Event page, you can set the event’s name, include a brief description, what time the event
starts, and how long it lasts.

Returning to the main diary page (refer to Figure 1-4) you’ll see a Manage Your Contacts link, as shown
in Figure 1-7.

Figure 1-7

Clicking that link takes you to the Contact Management page (see Figure 1-8).

4

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 4

Figure 1-8

Here you see a list of your contacts, which you can edit and delete by clicking the appropriate link in the
Contacts table. You can also add a new contact by clicking the Add New Contact link, which takes you
to the New Contact page (no surprise there!), shown in Figure 1-9.

Figure 1-9

Currently the contacts functionality is fairly simple, with such things as linking events and contacts and
automatically e-mailing contacts to remind them of an event.

5

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 5

So you’ve seen what the Online Diary does, now you can look at how it does it! The next section
describes the overall design and how the system hangs together. You get a high-level tour of the
database setup and each of the classes the system uses.

Design of the Online Diary
The diary system is split into the common three-layer architecture. All data and direct data modifying
code are in the data layer, a combination of database tables and stored procedures. The data access layer
is examined next.

Above the data access layer is the business layer providing all the rules and intelligence of the system.
The business layer has been coded as seven classes, which you tour through shortly.

Finally, the bit the user sees is the presentation layer, consisting of a number of .aspx files that utilize the
business and data access layers to create the diary’s interface. This layer is discussed in the last part of
this section.

The Data Access Layer
The Online Diary uses a SQL Server 2005 Express database. However, there’s no reason why this couldn’t
be changed to work with other databases. If the database supports stored procedures, then in theory all
that’s needed is a change of connection string and creation of stored procedures matching those in the
current SQL Server database. If the database doesn’t support stored procedures — for example, MS
Access — changes to class code would be necessary but not difficult.

Figure 1-10 shows the tables in the Online Diary database (DiaryDB).

Figure 1-10

6

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 6

The default database created using the new membership features of ASP.NET 2.0 is also used. The
database is a SQL Server Express database and not modified from the one created by Visual Studio
Express. However, to link the log on and the diary details, the UserName field in the DiaryDB database
takes its value originally from the membership database. You go through this in more detail shortly.
Membership details are contained in the ASPNETDB database that Visual Web Developer Express cre-
ates for you. Although it contains quite a few tables, you never access them via the code in this project.
It’s accessed exclusively by the new Login controls — it does all the hard work behind the scenes!

This project only makes use of the aspnet_Users table, shown in Figure 1-11, to provide log on security
checking and provide a username for the main DiaryDB. You may well want to extend the membership
database to include extra functionality such as personalizing the user experience or providing different
levels of membership (admin, user, operator), among other things.

Figure 1-11

The tables of the main Online Diary database and their roles are listed in the following table:

Table Name Description

Diary Contains details of all Online Diary users, their DiaryId, and names.

DiaryEntry Contains all the diary entries for all diary users.

DiaryEvent Contains all the diary events for all diary users.

Contact Holds the details of all contacts for the diaries.

The key that links all of the tables together is the DiaryId field. It’s the primary key field in the Diary
table and a foreign key field in all the other tables. Why not use the UserName field? Basically speed —
it’s easier and therefore faster for the database to do joins and searches on an integer field than it is on
character-based fields.

All access to the database is via a stored procedure. The naming convention is simply as follows:

ActionThingThisActionRelatesTo

7

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 7

Consider this very simple stored procedure:

DeleteContact

Rather unsurprisingly, DeleteContact deletes a contact from the database. The naming convention
means the purpose of each stored procedure doesn’t need a lot of explanation. As the code is discussed,
you look at the stored procedures in more detail where necessary.

The Business Layer
The business layer is organized into seven classes. The four main classes are as follows:

❑ OnlineDiary

❑ DiaryEntry

❑ DiaryEvent

❑ Contact

These classes do most of the work of temporarily holding diary-related data and retrieving and storing
it in the database. There are also three collection classes. The first order of business is the OnlineDiary
class.

The OnlineDiary Class
This class contains only two shared public methods, detailed in the following table:

Method Return Type Description

InsertDiary(ByVal UserName As String, None Inserts a new diary user
ByVal FirstName As String, ByVal into the OnlineDiary
LastName As String) database.

GetDiaryIdFromUserName(ByVal Integer Looks up the UserName
UserName As String) in the database and returns

the associated DiaryId.

The purpose of the OnlineDiary class is simply to provide a couple of handy shared methods relating
to an online diary as a whole. It could also be used to expand the diary system and add new functional-
ity that relates to the overall diary system, rather than a specific part such as contacts.

The Contact Class
The Contact class objectifies a single contact — a person or thing for which you want to store contact
information. It encapsulates everything to do with contacts, including the storing and retrieving of con-
tact information in the database.

8

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 8

It has two constructors, outlined in the following table:

Constructor Description

New(ByVal Diaryid as Integer) Creates a new Contact object with all properties set to
their default values.

New(ByVal ContactId As Long) Creates a new Contact object with its properties retrieved
from the database using the argument ContactId.

Having created a Contact object, saving it involves simply calling the Save() method. The class will
work out whether it’s a new contact that needs to be inserted into the database, or an existing one that
needs to be updated. In addition to the Save() method, the Contacts class contains two Delete()
methods, as well as two GetContacts() methods, all of which are outlined in the following table:

Method Return Type Description

Save() None Saves a fully populated Contact
object. If it’s a new contact, Save()
calls InsertNewContact sub, and
the details are inserted into the
database. The new ContactId is
returned from the database and
entered into mContactId. If the con-
tact already exists in the database,
Save() calls UpdateContact, which
updates the database values with
those in the Contact object.

DeleteContact() None Deletes from the database the Con-
tact object with ContactId equal to
mContactId of the object. Contact
object’s values are re-initialized to
their defaults.

DeleteContact(ByVal None Shared method that deletes the
ContactId As Long) Contact object from the database

with a ContactId value equal to the
ContactId argument of the method.

GetContactsByFirstLetter(ByVal SqlDataReader Shared method that returns a
DiaryId As SqlDataReaderobject populated
Integer,Optional ByVal with a list of contacts whose
FirstLetterOfSurname surname’s first letter matches the
As Char) FirstLetterOfSurname argu-

ment.This argument is optional; if
left off, all Contact objects regard-
less of surname’s first letter are
included in the DataSet’s rows.

Table continued on following page

9

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 9

Method Return Type Description

GetContactsByFirstLetterAsCollection(ByVal SqlDataReader Shared method
DiaryId As Integer, Optional ByVal that returns a
FirstLetterOfSurname As Char) ContactCollection

object populated
with Contact objects
whose surname’s first
letter matches the
FirstLetterOfSurname
argument. This argument
is optional; if left off, all
Contact objects regard-
less of surname’s first
letter are included in
the DataSet’s rows.

Finally, the Contact class contains the following properties:

Property Type Description

ContactId Long Each contact is represented by a unique ID. The ID is auto-
generated by the Contact table in the database whenever a
new contact is inserted.

FirstName String Contact’s first name.

LastName String Contact’s surname.

Email String Contact’s e-mail address.

Telephone String Contact’s telephone number.

MobilePhone String Contact’s mobile phone number.

AddressLine1 String Contact’s house name and street address.

City String Contact’s city of residence.

State String Contact’s state.

PostalCode String Contact’s zip or postal code.

The ContactCollection Class
The ContactCollection class inherits from the System.Collections.CollectionBase class. The
ContactCollection class’s purpose is simply to store a collection of Contact objects. This class gets
extensive use in the next chapter, when you create a contacts organizer.

10

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 10

The ContactCollection class has only one property:

Property Type Description

Item(ByVal Index As Integer) Integer Returns the Contact object stored at the
position in index in the collection.

The ContactCollection class’s public methods are as follows:

Method Return Type Description

Add(ByVal NewContact As Contact) None Adds a Contact object to
the collection held by the
ContactCollection object.

Add(ByVal ContactId As Long) None Creates a new Contact object.
ContactId is passed to the
Contact object’s constructor
to ensure it’s populated with
the contact’s details from the
database. The new Contact
object is then added to the
collection maintained by the
ContactCollection object.

Remove(ByVal Index as Integer) None Removes the Contact object
from the collection at the speci-
fied index.

That deals with the Contact classes; now take a look at the two classes dealing with diary entries.

The DiaryEntry Class
The DiaryEntry class objectifies a single entry in a diary. It encapsulates everything to do with diary
entries, including creating, updating, and retrieving diary entry data. It handles all the database access
for diary entries.

It has three constructors, outlined in the following table:

Constructor Description

New(ByVal DiaryId as Integer) Creates a new DiaryEntry object with all properties
set to their default values.

New(ByVal DiaryEntryId As Long) Creates a new DiaryEntry object with its properties
retrieved from the database using the argument
DiaryEntryId.

New(ByVal DiaryId AS Integer, Creates a new DiaryEntry object with its properties
ByVal EntryDate As Date) retrieved from the database using the arguments

DiaryId and EntryDate.

11

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 11

Having created a DiaryEntry object, saving it involves simply calling the Save() method. As with the
Save() method of the Contacts class, the DiaryEntry class will work out whether it’s a new diary
entry that needs to be inserted into the database, or an existing entry that needs to be updated. As well
as enabling retrieval of one diary entry’s details, the DiaryEntry class provides additional methods for
getting details of a number of diary entries as either a collection or as a DataSet by returning a
sqlDataReader object. The methods of this class are explained in the following table:

Method Return Type Description

Save() None Saves a fully populated
DiaryEntry object. If it’s a
new entry, Save() calls
InsertNewDiaryEntry
sub and the details are
inserted in to the database.
The new DiaryEntryId is
returned from the database
and entered in to mDi-
aryEntryId.
If the entry already exists
in the database, Save()
calls UpdateContact,
which updates the
database values with those
in the DiaryEntry object.

GetDaysInMonthWithEntries(ByVal Boolean Array Shared method that
DiaryId As Integer, ByVal Month returns a Boolean
As Integer, ByVal Year As
Integer) array detailing which days

have a diary entry associ-
ated with them. The array
index matches with the
day of the month (1 is the
first of the month, 2 the
second, and so on).

GetDiaryEntriesByDate(ByVal SqlDataReader Shared method
DiaryId As Integer, ByVal that returns a
FromDate As Date, ByVal ToDate SQLDataReader object
As Date) populated with rows from

the database detailing
diary entries between the
FromDate and ToDate
arguments.

12

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 12

Method Return Type Description

GetDiaryEntriesByDateAsCollection(ByVal DiaryEntryCollection Creates a new
DiaryId As Integer, ByVal FromDate DiaryEntry
As Date, ByVal ToDate As Date) Collection

object and populates
it with DiaryEntry
objects whose
EntryDate is
between the
FromDate and
ToDate arguments.

GetDiaryEntriesRecentlyChanged(ByVal SqlDataReader Returns a
DiaryId As Integer) SqlDataReader

containing a DataSet
of diary entries
recently created.

In addition to the constructors and methods, the DiaryEntry class contains the following properties:

Property Type Description

EntryTitle String Title for the day’s diary entry.

EntryText String Text of the day’s diary entry.

EntryDate Date Date the entry was posted.

The other class dealing with diary entries is the DiaryEntryCollection class, which is explained next.

The DiaryEntryCollection Class
The DiaryEntryCollection class inherits from the System.Collections.CollectionBase class. Its
purpose is simply to store a collection of DiaryEntry objects.

This class contains only one property, described in the following table:

Property Type Description

Item(ByVal Index As Integer Returns the DiaryEntry object stored
Integer) at the specified position in index in the

collection.

13

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 13

Along with the Item() property, the DiaryEntryCollection class has three public methods:

Method Return Type Description

Add(ByVal New DiaryEntry None Adds a DiaryEntry object to the collection
As DiaryEntry) held by the DiaryEntryCollection

object.

Add(ByVal DiaryEntryId None Creates a new DiaryEntry object.
As Long) DiaryEntryId is passed to the

DiaryEntry object’s constructor to ensure
it’s populated with the diary entry’s details
from the database. The new DiaryEntry
object is then added to the collection main-
tained by the DiaryEntryCollection
object.

Remove(ByVal Index as None Removes the DiaryEntry object from the
Integer) collection at the specified index.

So far the classes dealing with contacts and diary entries have been discussed. The next section discusses
the diary events.

The DiaryEvent Class
The DiaryEvent class objectifies a single entry in a diary. It encapsulates everything to do with diary
entries, including creating, updating, and retrieving diary events data. It handles all the database access
for diary events.

The DiaryEvent class has three constructors, outlined as follows:

Constructor Description

New(ByVal Diaryid as Integer) Creates a new DiaryEvent object with all properties set to
their default values.

New(ByVal EntryId As Long) Creates a new DiaryEvent object with its properties
retrieved from the database using the argument EventId.

New(ByVal DiaryId AS Integer, Creates a new DiaryEvent object with its properties
ByVal EventDate As Date) retrieved from the database using a combination of the

arguments DiaryId and EventDate.

Having created a DiaryEvent object, saving it involves simply calling the Save() method. The class
will work out whether it’s a new diary event to insert into the database, or an existing one in need of
updating. The DiaryEvent class also has two Delete() methods. One is a shared method and therefore
doesn’t require a DiaryEvent to be created, and requires an EventId parameter. It’s used by some of
the built-in data access components provided with ASP.NET 2.0. The second is an object method that
deletes the event referenced by the current DiaryEvent object. As well as enabling the details of one
diary entry to be retrieved, the DiaryEvent class provides additional methods for getting details of a
number of diary events as either a collection or as a DataSet by returning a SqlDataReader object.

14

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 14

The following table explains these methods in detail:

Method Return Type Description

Save() None Saves a fully populated
DiaryEvent object. If it’s
a new entry, Save() calls
InsertNew DiaryEvent
sub and the details are
inserted into the data-
base. The new EventId
is returned from the
database and entered
in to mEventId.
If the entry already
exists in the database,
Save() calls
UpdateDiaryEvent,
which updates the
database values with
those in the DiaryEvent
object.

GetDaysInMonthWithEvents(ByVal Boolean Array Shared method that
DiaryId As Integer, ByVal returns a Boolean array
Month As Integer, ByVal Year detailing which days
As Integer) have events associated

with them. The array
index matches with the
day of the month (1 is the
first of the month, 2 the
second, and so on).

GetDiaryEventsByDate(ByVal DiaryId SqlDataReader Shared method
As Integer, ByVal FromDate As Date, that returns a
ByVal ToDate As Date) SqlDataReader object

populated with rows
from the database detail-
ing diary events between
the FromDate and
ToDate arguments.

GetDiaryEventsByDateAsCollection(ByVal DiaryEventCollection Creates a new Diary
DiaryId As Integer, ByVal FromDate As EventCollection
Date, ByVal ToDate As Date) object and populates it

with DiaryEvent objects
whose EntryDate is
between the FromDate
and ToDate arguments.

Table continued on following page

15

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 15

Method Return Type Description

DeleteEvent() None Deletes from the database the
event with EventId equal to
mEventId of the object. The
DiaryEvent object’s values are
re-initialized to their defaults.

DeleteEvent(ByVal EventId As Long) None Shared method that deletes the
event from the database with
an EventId value equal to the
EventId argument of the
method.

In addition to the constructors and public methods, the DiaryEvent class has these four properties:

Property Type Description

EventDescription String Description of the event.

EventName String Short name for the event.

EventDate Date Date the event starts.

EventDuration Integer Length of time in minutes that the event lasts.

One more class to go. The next section looks at the diary collection handling class:
DiaryEventCollection.

The DiaryEventCollection Class
The DiaryEventCollection class inherits from the System.Collections.CollectionBase class. Its
purpose is simply to store a collection of DiaryEvent objects. The class employs the following methods:

Method Return Type Description

Add(ByVal NewDiaryEvent As None Adds a DiaryEvent object to the collection
DiaryEvent) held by the DiaryEventCollection

object.

Add(ByVal DiaryEventId None Creates a new DiaryEvent object.
As Long) DiaryEventId is passed to the

DiaryEvent object’s constructor to ensure
it’s populated with the event’s details from
the database. The new DiaryEvent object
is then added to the collection maintained
by the DiaryEventCollection object.

Remove(ByVal Index As None Removes the DiaryEvent object from the
Integer) collection at the specified index.

16

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 16

This class contains only one property:

Property Type Description

Item(ByVal Index As Integer) Integer Returns the DiaryEvent object stored at
the position in index in the collection.

That completes an overview of all the classes and their design, methods, and properties. The next section
takes a more in-depth look at the code and the .aspx pages dealing with presentation.

Code and Code Explanation
This section digs into each of the important pages and shows you how they interact with each other, as
well as how they use the classes in the business layer. This section doesn’t cover every single line of
every page, but rather it takes a general overview of how the application works and dives a bit deeper
where necessary.

Discussion of the project is approached in a functionality-based way. Instead of discussing a specific
page and what it does, the following sections discuss a process — such as registration — and how it’s
achieved.

It begins with an overview of the files and file structure.

File Structure
An overview of the file structure is shown in Figure 1-12.

Figure 1-12

17

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 17

Each of the seven class files is stored in the App_Code directory (at the top of the figure). The App_Data
directory contains the two databases: the login database (ASPNETDB.MDF) and the Online Diary
database (DiaryDB.mdf). Pages that require you to log in before viewing are stored separately in the
SecureDiary directory. Finally, the root directory contains login pages, registration pages, and password
reminder pages; basically anything that requires you to be logged in to view.

Registration, Logging On, and Security
The Online Diary application uses the new Login controls to provide the diary’s user handing features,
including new user registration, log in, and password reminder.

The Login controls are a real time saver, allowing a lot of sophisticated functionality to be added with
just a little work and hardly any code! ASP.NET 2.0 has seven new security or login controls:

❑ Login: Enables users to log in and verifies username and password.

❑ LoginView: Enables the display of different templates depending on whether a user is logged in
and also his or her role membership.

❑ PasswordRecovery: Provides password reminder functionality for users who forget their
password.

❑ LoginStatus: Displays whether a user is logged in or out.

❑ LoginName: Displays currently logged-in username.

❑ CreateUserWizard: Creates a new user wizard — registration of a new user in simple steps.

❑ ChangePassword: Enables users to change their password.

The Online Diary project, however, use only the Login, LoginName, CreateUserWizard, and
ChangePassword controls.

Logging On
The SignOn.aspx page contains a Login control. The user database is created using the web site admin-
istration tools. This goes through the steps needed one by one, and once it’s finished a new database
called ASPNETDB.MDF appears in the App_Data directory of the diary project.

The markup for the Login control is shown here:

<asp:Login ID=”Login1” runat=”server” BackColor=”#F7F6F3” BorderColor=”#E6E2D8”
BorderPadding=”4”

BorderStyle=”Solid” BorderWidth=”1px” CreateUserText=”Not
registered? Click here to register now.”

CreateUserUrl=”~/RegisterStart.aspx”
DestinationPageUrl=”~/SecureDiary/DiaryMain.aspx” Font-Names=”Verdana”

Font-Size=”0.8em” ForeColor=”#333333” Height=”197px”
PasswordRecoveryText=”Forgotten your password?”

PasswordRecoveryUrl=”~/PasswordReminder.aspx” Style=”z-
index: 100; left: 78px;

position: absolute; top: 55px” Width=”315px”>
<LoginButtonStyle BackColor=”#FFFBFF” BorderColor=”#CCCCCC”

BorderStyle=”Solid” BorderWidth=”1px”

18

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 18

Font-Names=”Verdana” Font-Size=”0.8em”
ForeColor=”#284775” />

<TextBoxStyle Font-Size=”0.8em” />
<TitleTextStyle BackColor=”#5D7B9D” Font-Bold=”True” Font-

Size=”0.9em” ForeColor=”White” />
<InstructionTextStyle Font-Italic=”True” ForeColor=”Black”

/>

</asp:Login>

Important attributes to note are DestinationPageUrl, which determines where the user is navigated to
if he or she enters a valid username and password. In the Online Diary project it’s the Diarymain.aspx
page, the center of the Online Diary’s interface.

To enable new users to register, the CreateUserText has been set to a friendly “register here” message;
the URL for registering is specified in CreateUserUrl.

Finally, just in case the user has already registered but forgotten his or her password, the
PasswordRecoveryText attribute displays a “Forgotten your password?” message and
PasswordRecoveryUrl sets the URL the users are navigated to if they need to find out their password.

The only code you need to write is in the Login control’s LoggedIn event, which fires if the user suc-
cessfully enters a username and password:

Protected Sub Login1_LoggedIn(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Login1.LoggedIn

Dim DiaryId As Integer = GetDiaryIdFromUserName(Login1.UserName)
Session(“DiaryId”) = DiaryId

End Sub

This uses the supplied username to look up the user’s DiaryId in the Online Diary database. This is
then stored in the session variable.

The SignOn.aspx page also allows new users to register.

New User Registration
The RegisterStart.aspx. page deals with the registration of a new user. As with SignOn.aspx, this page
also uses one of the new Login controls, this time the CreateUserWizard control. The markup for the
CreateUserWizard control is shown in the following code:

<asp:CreateUserWizard ID=”CreateUserWizard1” runat=”server”
BackColor=”#F7F6F3” BorderColor=”#E6E2D8”

BorderStyle=”Solid” BorderWidth=”1px” Font-Names=”Verdana” Font-
Size=”0.8em”

Style=”z-index: 100; left: 66px; position: absolute; top: 43px”
Height=”164px” Width=”300px” FinishDestinationPageUrl=”~/SignOn.aspx”>

<SideBarStyle BackColor=”#5D7B9D” BorderWidth=”0px” Font-Size=”0.9em”
VerticalAlign=”Top” />

<SideBarButtonStyle BorderWidth=”0px” Font-Names=”Verdana”
ForeColor=”White” />

19

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 19

<NavigationButtonStyle BackColor=”#FFFBFF” BorderColor=”#CCCCCC”
BorderStyle=”Solid”

BorderWidth=”1px” Font-Names=”Verdana” ForeColor=”#284775” />
<HeaderStyle BackColor=”#5D7B9D” BorderStyle=”Solid” Font-Bold=”True”

Font-Size=”0.9em”
ForeColor=”White” HorizontalAlign=”Left” />

<CreateUserButtonStyle BackColor=”#FFFBFF” BorderColor=”#CCCCCC”
BorderStyle=”Solid”

BorderWidth=”1px” Font-Names=”Verdana” ForeColor=”#284775” />
<ContinueButtonStyle BackColor=”#FFFBFF” BorderColor=”#CCCCCC”

BorderStyle=”Solid”
BorderWidth=”1px” Font-Names=”Verdana” ForeColor=”#284775” />

<StepStyle BorderWidth=”0px” />
<TitleTextStyle BackColor=”#5D7B9D” Font-Bold=”True” ForeColor=”White”

/>
<WizardSteps>

<asp:CreateUserWizardStep runat=”server”>
</asp:CreateUserWizardStep>
<asp:WizardStep ID=”personalDetailsStep” runat=”server” Title=”User

Details”>
<table border=”0” style=”font-size: 100%; font-family:

Verdana; z-index: 100; left: 0px; position: absolute; top: 0px;”>
<tr>

<td align=”center” colspan=”2” style=”font-weight:
bold; color: white; background-color: #5d7b9d”>

Your Personal Details</td>
</tr>
<tr>

<td align=”right” style=”height: 26px”>
<label for=”UserName”>

Your First Name:</label></td>
<td style=”width: 179px; height: 26px”>

<asp:TextBox ID=”firstNameTextBox”
runat=”server” CausesValidation=”True”></asp:TextBox>

</td>
</tr>
<tr>

<td align=”right”>
<label for=”Password”>

Your Last Name:</label></td>
<td style=”width: 179px”>

<asp:TextBox ID=”lastNameTextBox”
runat=”server” CausesValidation=”True”></asp:TextBox>

</td>
</tr>
<tr>

<td align=”center” colspan=”2” style=”height:
18px”>

 </td>
</tr>
<tr>

<td align=”center” colspan=”2” style=”color: red”>
 </td>

</tr>

20

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 20

</table>
</asp:WizardStep>
<asp:CompleteWizardStep runat=”server”>

<ContentTemplate>
<table border=”0” style=”font-size: 100%; width: 383px;

font-family: Verdana; height: 164px”>
<tr>

<td align=”center” colspan=”2” style=”font-weight:
bold; color: white; background-color: #5d7b9d”>

Complete</td>
</tr>
<tr>

<td>
Your account has been successfully

created.</td>
</tr>
<tr>

<td align=”right” colspan=”2”>
<asp:Button ID=”ContinueButton” runat=”server”

BackColor=”#FFFBFF” BorderColor=”#CCCCCC”
BorderStyle=”Solid” BorderWidth=”1px”

CausesValidation=”False” CommandName=”Continue”
Font-Names=”Verdana” ForeColor=”#284775”

Text=”Continue” ValidationGroup=”CreateUserWizard1” />
</td>

</tr>
</table>

</ContentTemplate>
</asp:CompleteWizardStep>

</WizardSteps>
</asp:CreateUserWizard>

Most of the markup and attributes relate to style settings. However, one essential attribute is the
FinishDestinationPageUrl. This is where the user is taken once the registration process is com-
pleted; in the Online Diary it’s the SignOn.aspx page.

You’ve probably noticed a number of WizardStep tags in the markup, such as this one:

<asp:WizardStep ID=”personalDetailsStep” runat=”server” Title=”User Details”>

The CreateUserWizard works on a step-by-step basis. There must be least one step that allows the user
to choose a username and password and various security questions (see Figure 1-13).

This step and its style can be modified, but Figure 1-13 shows its default value. The control takes care of
inserting the new user data into the user database.

A second step, shown in Figure 1-14, is displayed after the user is created.

21

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 21

Figure 1-13

Figure 1-14

This screen asks users for their first name and last name. This time it’s up to you to store the data some-
where, and you do that in the CreateUserWizard control’s FinishButtonClick event:

Protected Sub CreateUserWizard1_FinishButtonClick(ByVal sender As Object, ByVal
e As System.Web.UI.WebControls.WizardNavigationEventArgs) Handles
CreateUserWizard1.FinishButtonClick

Dim myTextBox As TextBox
Dim UserName, FirstName, LastName
myTextBox = CreateUserWizard1.FindControl(“firstNameTextBox”)
FirstName = myTextBox.Text
myTextBox = CreateUserWizard1.FindControl(“lastNameTextBox”)
LastName = myTextBox.Text
UserName = CreateUserWizard1.UserName
OnlineDiary.InsertDiary(UserName, FirstName, LastName)

End Sub

22

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 22

This step creates a new diary for users and stores their first and last names. The UserName comes from
the CreateUserWizard control’s UserName property, and then uses the shared method InsertDiary()
to insert the new user in the Online Diary’s database.

Being human, sometimes people forget their passwords. Fortunately, ASP.NET 2.0 comes with the capa-
bility to refresh overloaded memories.

Password Reminder
Again with virtually no code, you can create a fully functional password reminder feature for the Online
Diary, this time courtesy of the PasswordRecovery control. Virtually all of its settings are at the default
values or simply related to style. Even better, there’s just one line of code and that’s in the SendingMail
event:

Protected Sub PasswordRecovery1_SendingMail(ByVal sender As Object, ByVal e As
System.Web.UI.WebControls.MailMessageEventArgs) Handles
PasswordRecovery1.SendingMail

returnToLogOnHyperLink.Visible = True
End Sub

The SendingMail event fires when the user presses the Send Email button and simply displays the
Return to Main Page link, rather than leaving the user guessing as to where to go next.

The main work involved is configuring the SMTP server settings that’ll be used to actually send the
password reminder e-mail. Visual Web Developer doesn’t come with an SMTP server. However, if you
are using Windows XP or 2000, all you need to do to install one is go to the Start➪Settings➪Control
Panel➪Add or Remove Programs. From there, select Add/Remove Windows Components. Select the
Internet Information Server (IIS) option and click Details at the bottom-right of the dialog. In the result-
ing dialog box, you’ll see a list. Check the box next to SMTP Service and click OK. Then click Next to
install an SMTP service.

Once the SMTP service is installed, add the following shaded code between the <configuration> tags
in the Web.config file:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<connectionStrings>
<add name=”DiaryDBConnectionString” connectionString=”Data

Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\DiaryDB.mdf;Integrated
Security=True;User Instance=True”

providerName=”System.Data.SqlClient” />
</connectionStrings>
<system.web>
<roleManager enabled=”true” />

<authentication mode=”Forms”/>
<compilation debug=”true”/></system.web>

<system.net>
<mailSettings>
<smtp from=”system@diary-system.com”>
<network host=”localhost” password=”” userName=”” />
</smtp>
</mailSettings>
</system.net>
</configuration>

23

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 23

Viewing the Online Calendar
The DiaryMain.aspx page is the central hub of the application. It displays a calendar of the current
month, showing which days have events or diary entries associated with them. It also displays a list of
upcoming events and diary entries for the current month.

To display when a day has events or a diary entry, the OnDayRender event of the Calendar control
is used:

Protected Sub Calendar1_OnDayRender(ByVal sender As Object, ByVal e As
System.Web.UI.WebControls.DayRenderEventArgs) Handles Calendar1.DayRender

If Not e.Day.IsOtherMonth Then
If entryArrayOfDays Is Nothing Then

entryArrayOfDays = GetDaysInMonthWithEntries(Session(“DiaryId”),
e.Day.Date.Month, e.Day.Date.Year)

End If

If eventArrayOfDays Is Nothing Then
eventArrayOfDays = GetDaysInMonthWithEvents(Session(“DiaryId”),

e.Day.Date.Month, e.Day.Date.Year)
End If

If entryArrayOfDays(CInt(e.Day.DayNumberText)) Then
e.Cell.BackColor = Drawing.Color.Blue

End If

If eventArrayOfDays(CInt(e.Day.DayNumberText)) Then
e.Cell.ForeColor = Drawing.Color.Red

End If

End If
End Sub

The first If block in the preceding event code deals with ensuring entryArrayOfDays and
eventArrayOfDays are populated with details of which days have an associated event or diary entry.
They are both Boolean arrays; if a day has an event or entry, the array element for that day contains
True. Arrays are populated by the DiaryEnty and DiaryEvent classes’ shared functions
GetDaysInMonthWithEntries() and GetDaysInMonthWithEvents().

In the second If block of the event the code checks to see whether the day of the month being rendered
has a diary event or diary entry. If there’s an event, the day’s text is set to red. If there’s a diary entry the
day’s background is rendered in blue.

As well as a Calendar control, the main page also has two GridView controls (discussed a bit later).
The upper one displays upcoming events; the lower one displays recent diary entries. Both GridView
controls get their data from an ObjectDataSource control, new to ASP.NET 2.0. In the past, data source
controls have interacted directly with the database. They are nice and easy to use — put on one a page,
set a few properties, drop in a few data-aware controls, and away you go. However, that’s not actually
good coding practice. Splitting up the data access, business, and presentation layers is generally consid-
ered good practice, but means leaving behind nice and easy-to-use data source controls.

24

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 24

However, the new ObjectDataSource lets you have the best of both: easy-to-use data controls and use of
classes to separate business, data, and presentation layers. Instead of connecting directly to a database,
the ObjectDataSource takes its data from one of the classes. diaryEntriesObjectDataSource on
DiaryMain.aspx, for example, takes its data from the GetDiaryEntriesRecentlyChanged() method
of the DiaryEntry class, whose markup is shown here:

<asp:ObjectDataSource ID=”diaryEntriesObjectDataSource” runat=”server”
SelectMethod=”GetDiaryEntriesRecentlyChanged”

TypeName=”DiaryEntry”>
<SelectParameters>

<asp:SessionParameter DefaultValue=”-1” Name=”DiaryId”
SessionField=”DiaryId” Type=”Int32” />

</SelectParameters>
</asp:ObjectDataSource>

The TypeName attribute specifies the class name to use, and the SelectMethod attribute specifies which
method of that class will provide the data. GetDiaryEntriesRecentlyChanged() is a shared method,
shown here:

Public Shared Function GetDiaryEntriesRecentlyChanged(ByVal DiaryId As Integer)
As SqlDataReader

Dim diaryDBConn As New SqlConnection(conString)
Dim sqlString As String = “GetRecentDiaryEntries”
Dim sqlCmd As New SqlCommand(sqlString, diaryDBConn)
sqlCmd.CommandType = CommandType.StoredProcedure

sqlCmd.Parameters.AddWithValue(“@DiaryId”, DiaryId)

diaryDBConn.Open()
Dim entrySQLDR As SqlDataReader =

sqlCmd.ExecuteReader(CommandBehavior.CloseConnection)
sqlCmd = Nothing
Return entrySQLDR

End Function

The method returns a SqlDataReader object populated with the data the ObjectDataSource control
will use.

Actually displaying the data is then just a matter of pointing a data-aware control at the
ObjectDataSource:

<asp:GridView ID=”recentEntriesGridView” runat=”server”
AutoGenerateColumns=”False”

Caption=”Recent Entries” CaptionAlign=”Left” CellPadding=”4”
DataSourceID=”diaryEntriesObjectDataSource”

ForeColor=”#333333” GridLines=”None” Style=”z-index: 105; left:
535px; position: absolute;

top: 321px” Width=”476px” Height=”208px”>
<FooterStyle BackColor=”#5D7B9D” Font-Bold=”True” ForeColor=”White”

/>
<RowStyle BackColor=”#F7F6F3” ForeColor=”#333333” />
<Columns>

<asp:BoundField DataField=”EntryDate” />
<asp:BoundField DataField=”EntryTitle” />

25

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 25

<asp:BoundField DataField=”EntryText” />
</Columns>
<PagerStyle BackColor=”#284775” ForeColor=”White”

HorizontalAlign=”Center” />
<SelectedRowStyle BackColor=”#E2DED6” Font-Bold=”True”

ForeColor=”#333333” />
<HeaderStyle BackColor=”#5D7B9D” Font-Bold=”True” ForeColor=”White”

/>
<EditRowStyle BackColor=”#999999” />
<AlternatingRowStyle BackColor=”White” ForeColor=”#284775” />

</asp:GridView>

In the GridView control’s markup, the DataSourceID attribute specifies the source of the data, which is
the ObjectDataSource control. In addition, the markup specifies which columns to display by setting
AutoGenerateColumns to False. A final step is to create a list of columns:

<Columns>
<asp:BoundField DataField=”EntryDate” />
<asp:BoundField DataField=”EntryTitle” />
<asp:BoundField DataField=”EntryText” />

</Columns>

As well as enabling the display of data, the ObjectDataSource control can also update, insert, and
delete records from a database, as demonstrated shortly.

Creating, Editing, and Viewing a Diary Entry
The DayView.aspx page allows for diary editing. This page contains a simple form allowing you to enter
title and diary entry details. It also displays any existing diary entry.

All of the hard work is done by use of the DiaryEntry class. Its Page_Load event creates a new
DiaryEntry class, passing its constructor the current user’s DiaryId and also the date the page
refers to:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

mDiaryEntry = New DiaryEntry(CInt(Session(“DiaryId”)),
CDate(dayShownLabel.Text))

changeDayCalendar.SelectedDate = CDate(dayShownLabel.Text)
changeDayCalendar.VisibleDate = changeDayCalendar.SelectedDate
If Not IsPostBack Then

entryTextTextBox.Text = mDiaryEntry.EntryText
entryTitleTextBox.Text = mDiaryEntry.EntryTitle

End If
End Sub

26

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 26

mDiaryEntry is a global variable used to hold the DiaryEntry object relating to the day being edited.

The constructor, shown in the following code, does all the hard work of actually getting the data:

Public Sub New(ByVal DiaryId As Integer, ByVal EntryDate As Date)
mDiaryId = DiaryId
If mDiaryId > 0 Then

Try

Dim diaryDBConn As New SqlConnection(conString)
Dim sqlString As String = “GetDiaryEntryByDate”
Dim sqlCmd As New SqlCommand(sqlString, diaryDBConn)
sqlCmd.CommandType = CommandType.StoredProcedure

sqlCmd.Parameters.AddWithValue(“@DiaryId”, mDiaryId)
sqlCmd.Parameters.AddWithValue(“@EntryFromDate”, EntryDate)
sqlCmd.Parameters.AddWithValue(“@EntryToDate”, EntryDate)

diaryDBConn.Open()
Dim diaryEntrySQLDR As SqlDataReader =

sqlCmd.ExecuteReader(CommandBehavior.CloseConnection)
sqlCmd = Nothing
If diaryEntrySQLDR.Read() Then

mDiaryEntryId = CLng(diaryEntrySQLDR(“DiaryEntryId”))
mEntryDate = CDate(diaryEntrySQLDR(“EntryDate”))
mEntryTitle = diaryEntrySQLDR(“EntryTitle”).ToString
mEntryText = diaryEntrySQLDR(“EntryText”).ToString

Else
mDiaryEntryId = -1
mEntryDate = EntryDate

End If

diaryEntrySQLDR.Close()
diaryEntrySQLDR = Nothing
diaryDBConn.Close()
diaryDBConn = Nothing

Catch ex As Exception
mDiaryEntryId = -1

End Try

End If
End Sub

The GetDiaryEntryByDate stored procedure is called to get the data. If there isn’t an existing entry for
that day, mDiaryEntryId is set to -1 and all the other properties are left at their default values.
Otherwise they are populated with the data from the database.

27

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 27

When the diary title or entry boxes are changed, mDiaryEntry is updated:

Protected Sub entryTitleTextBox_TextChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles entryTitleTextBox.TextChanged

mDiaryEntry.EntryTitle = entryTitleTextBox.Text
End Sub

Protected Sub entryTextTextBox_TextChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles entryTextTextBox.TextChanged

mDiaryEntry.EntryText = entryTextTextBox.Text
End Sub

Saving changes occurs when you click the Save button:

Protected Sub saveDiaryEntryButton_Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles saveDiaryEntryButton.Click

mDiaryEntry.Save()
End Sub

All that’s involved is calling the Save() method of the DiaryEntry object:

Public Sub Save()
If mDiaryEntryId = -1 Then

InsertNewDiaryEntry()
Else

UpdateDiaryEntry()
End If

End Sub

Based on whether or not mDiaryEntryId is -1, the method either inserts a new entry into the database
or updates an existing one. The private method InsertNewDiaryEntry() inserts a new diary entry:

Private Sub InsertNewDiaryEntry()
If mDiaryId <> -1 Then

Dim diaryDBConn As New SqlConnection(conString)
Dim sqlString As String = “InsertDiaryEntry”
Dim sqlCmd As New SqlCommand(sqlString, diaryDBConn)
sqlCmd.CommandType = CommandType.StoredProcedure

sqlCmd.Parameters.AddWithValue(“@DiaryId”, mDiaryId)
sqlCmd.Parameters.AddWithValue(“@EntryDate”, mEntryDate)
sqlCmd.Parameters.AddWithValue(“@EntryTitle”, mEntryTitle)
sqlCmd.Parameters.AddWithValue(“@EntryText”, mEntryText)
sqlCmd.Parameters.Add(“@NewDiaryEntryId”, SqlDbType.BigInt)
sqlCmd.Parameters(“@NewDiaryEntryId”).Direction =

ParameterDirection.ReturnValue

diaryDBConn.Open()
sqlCmd.ExecuteNonQuery()
mDiaryEntryId = CLng(sqlCmd.Parameters(“@NewDiaryEntryId”).Value())

diaryDBConn.Close()
sqlCmd = Nothing

28

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 28

diaryDBConn = Nothing
End If

End Sub

The private method UpdateDiaryEntry() updates it:

Private Sub UpdateDiaryEntry()
If mDiaryEntryId <> -1 Then

Dim diaryDBConn As New SqlConnection(conString)
Dim sqlString As String = “UpdateDiaryEntry”
Dim sqlCmd As New SqlCommand(sqlString, diaryDBConn)
sqlCmd.CommandType = CommandType.StoredProcedure

sqlCmd.Parameters.AddWithValue(“@DiaryEntryId”, mDiaryEntryId)
sqlCmd.Parameters.AddWithValue(“@EntryDate”, mEntryDate)
sqlCmd.Parameters.AddWithValue(“@EntryTitle”, mEntryTitle)
sqlCmd.Parameters.AddWithValue(“@EntryText”, mEntryText)

diaryDBConn.Open()
sqlCmd.ExecuteNonQuery()
diaryDBConn.Close()
sqlCmd = Nothing
diaryDBConn = Nothing

End If
End Sub

Moving on, the next section discusses aspects of the code dealing with editing, viewing, and deleting
events.

Creating, Editing, and Viewing Diary Events
Events are created by clicking the Add New Event link on the DayView.aspx page. This takes you to a
simple form on the AddEvent.aspx page. When the Save button is clicked, the button’s click event cre-
ates a new DiaryEvent object, populates its properties from the form, and then calls its Save() method.
The code flow is much the same as for the DiaryEvent object’s Save() method. Where the functionality
is similar or the same, the names of methods on different objects have been kept the same. It reduces
confusion and makes your life easier.

All events relating to a particular day are shown on the DayView.aspx page. An ObjectDataSource con-
trol on the DayView.aspx page draws its data from the DiaryEvent object’s GetDiaryEventsByDate()
shared method. The markup for the ObjectDataSource control is shown here:

<asp:ObjectDataSource ID=”eventsObjectDataSource” runat=”server”
SelectMethod=”GetDiaryEventsByDate”

TypeName=”DiaryEvent” DeleteMethod=”DeleteEvent”>
<SelectParameters>

<asp:SessionParameter DefaultValue=”-1” Name=”DiaryId”
SessionField=”DiaryId” Type=”Int32” />

<asp:ControlParameter ControlID=”dayShownLabel” DefaultValue=””
Name=”FromDate” PropertyName=”Text”

Type=”DateTime” />
<asp:ControlParameter ControlID=”dayShownLabel” DefaultValue=””

Name=”ToDate” PropertyName=”Text”

29

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 29

Type=”DateTime” />
<asp:Parameter DefaultValue=”0” Name=”MaxRows” Type=”Int32” />

</SelectParameters>
<DeleteParameters>

<asp:Parameter Name=”EventId” Type=”Int64” />
</DeleteParameters>

</asp:ObjectDataSource>

Notice that the SelectParameters and the DeleteParameters are set to specify the data passed to the
GetDiaryEventsByDate() method used to pull back the data, and the DeleteEvent() method is used
to delete diary events.

A GridView control is hooked to the ObjectDataSource in the code above:

<asp:GridView ID=”eventsGridView” runat=”server”
AutoGenerateColumns=”False” CellPadding=”4”

DataSourceID=”eventsObjectDataSource” ForeColor=”#333333”
GridLines=”None” Height=”1px”

PageSize=”5” Style=”z-index: 108; left: 78px; position: absolute; top:
357px”

Width=”542px” DataKeyNames=”EventId”>
<FooterStyle BackColor=”#5D7B9D” Font-Bold=”True” ForeColor=”White” />
<RowStyle BackColor=”#F7F6F3” ForeColor=”#333333” />
<Columns>

<asp:HyperLinkField DataNavigateUrlFields=”EventId” Text=”Edit”
DataNavigateUrlFormatString=”~/SecureDiary/EditEvent.aspx?EventId={0}” />

<asp:CommandField ShowDeleteButton=”True” />
<asp:BoundField DataField=”EventName” HeaderText=”Event” />
<asp:BoundField DataField=”EventDescription”

HeaderText=”Description” />
</Columns>
<PagerStyle BackColor=”#284775” ForeColor=”White”

HorizontalAlign=”Center” />
<SelectedRowStyle BackColor=”#E2DED6” Font-Bold=”True”

ForeColor=”#333333” />
<HeaderStyle BackColor=”#5D7B9D” Font-Bold=”True” ForeColor=”White” />
<EditRowStyle BackColor=”#999999” />
<AlternatingRowStyle BackColor=”White” ForeColor=”#284775” />

</asp:GridView>

Again, the AutoGenerateColumns parameter is set to False, and the columns are specified as follows:

<Columns>
<asp:HyperLinkField DataNavigateUrlFields=”EventId” Text=”Edit”

DataNavigateUrlFormatString=”~/SecureDiary/EditEvent.aspx?EventId={0}” />
<asp:CommandField ShowDeleteButton=”True” />
<asp:BoundField DataField=”EventName” HeaderText=”Event” />
<asp:BoundField DataField=”EventDescription”

HeaderText=”Description” />
</Columns>

Notice the hyperlink and field that when clicked will take the user to the EditEvent.aspx page, and the
URL contains data passed to the EventId in the URL by way of the EventId querystring parameter. It’s set
to be {0}, which at run time will be substituted by the value of the first column for each row in the DataSet.

30

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 30

In addition, the code specifies a Delete button on each row in the grid:

<asp:CommandField ShowDeleteButton=”True” />

When you click the Delete button, the GridView control asks the ObjectDataSource control to call the
specified delete method of the data providing class. In this case it’s the DeleteEvent() method of the
DiaryEvent class. The DataKeyNames attribute in the GridView control’s markup specifies the primary
key field that needs to be used to delete the row.

Returning to editing the event: When you click the Edit link you are taken to the EditEvent.aspx page.
The clicked Edit link’s EventId is passed as a URL parameter. The EditEvent.aspx page is virtually iden-
tical to the AddEvent.aspx page discussed previously. The main difference is when the page initializes.
The Page_Init event handler is shown in the following code, and it’s here that the event details are
entered into the form:

Protected Sub Page_Init(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Init

Dim EventBeingEdited As New
DiaryEvent(CLng(Request.QueryString(“EventId”)))

eventNameTextBox.Text = EventBeingEdited.EventName
eventDescriptionTextBox.Text = EventBeingEdited.EventDescription
dayShownLabel.Text = EventBeingEdited.EventDate.Day & “ “ &

MonthName(EventBeingEdited.EventDate.Month) & “ “ & EventBeingEdited.EventDate.Year

Dim NewListItem As ListItem, HourCount, MinuteCount

For HourCount = 0 To 23
If HourCount < 10 Then

NewListItem = New ListItem(“0” & HourCount, HourCount.ToString)
Else

NewListItem = New ListItem(HourCount.ToString, HourCount.ToString)
End If
If EventBeingEdited.EventDate.Hour = HourCount Then

NewListItem.Selected = True
End If
StartHourDropDownList.Items.Add(NewListItem)

Next

For MinuteCount = 0 To 59
If MinuteCount < 10 Then

NewListItem = New ListItem(“0” & MinuteCount.ToString,
MinuteCount.ToString)

Else
NewListItem = New ListItem(MinuteCount.ToString,

MinuteCount.ToString)
End If
If EventBeingEdited.EventDate.Minute = MinuteCount Then

NewListItem.Selected = True
End If
StartMinuteDropDownList.Items.Add(NewListItem)

Next
Dim itemToSelect As ListItem

31

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 31

itemToSelect =
eventDurationDropDownList.Items.FindByValue(EventBeingEdited.EventDuration.ToString
())

itemToSelect.Selected = True

EventBeingEdited = Nothing
End Sub

The EventId is extracted from the URL parameters and used to create a new DiaryEvent object.
Populating the event text boxes is easy enough, but the details of time and duration of the event involve
populating the Hour and Minute drop-down boxes and ensuring the correct value is selected. This is
achieved by looping through hours from 0 to 23 and then minutes from 0 to 59. If the hour to be added
to the list is the same as the hour about to be added to the list box, make sure it’s the default selected
one. The same goes for the minute list box population.

Managing Contacts
Managing contacts is the last aspect of the Online Diary you’ll examine, and uses many of the same
principles as the other sections. YourContacts.aspx is the central contact management page. Here a list of
current contacts is displayed, and the option to add, edit, and delete contacts is possible.

All contacts are displayed using a DataObjectSource and a GridView control; the principles being
identical to the displaying, deleting, and editing of the diary events. This time the Contact class is used
for editing and display contact details, but otherwise the code is very similar to the events code.

The main page for displaying contacts is YourContacts.aspx, which contains a GridView control in
which all current contacts are listed:

<asp:GridView ID=”GridView1” runat=”server” AutoGenerateColumns=”False”
CellPadding=”4”

DataSourceID=”ObjectDataSource1” ForeColor=”#333333” GridLines=”None”
Style=”z-index: 101;

left: 36px; position: absolute; top: 137px” DataKeyNames=”ContactId”>
<FooterStyle BackColor=”#5D7B9D” Font-Bold=”True” ForeColor=”White” />
<Columns>

<asp:CommandField ShowDeleteButton=”True” />
<asp:HyperLinkField DataNavigateUrlFields=”ContactId”

DataNavigateUrlFormatString=”~/SecureDiary/EditContact.aspx?ContactId={0}”
Text=”Edit” />

<asp:BoundField DataField=”LastName” HeaderText=”Last Name” />
<asp:BoundField DataField=”FirstName” HeaderText=”First Name” />
<asp:BoundField DataField=”Telephone” HeaderText=”Telephone” />
<asp:BoundField DataField=”Email” HeaderText=”Email Address” />

</Columns>
<RowStyle BackColor=”#F7F6F3” ForeColor=”#333333” />
<EditRowStyle BackColor=”#999999” />
<SelectedRowStyle BackColor=”#E2DED6” Font-Bold=”True”

ForeColor=”#333333” />
<PagerStyle BackColor=”#284775” ForeColor=”White”

HorizontalAlign=”Center” />
<HeaderStyle BackColor=”#5D7B9D” Font-Bold=”True” ForeColor=”White” />
<AlternatingRowStyle BackColor=”White” ForeColor=”#284775” />

</asp:GridView>

32

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 32

It gets its data from the ObjectDataSource control ObjectDataSource1, which in turn connects to the
Contact class’s GetContactByFirstLetter() shared method:

<asp:ObjectDataSource ID=”ObjectDataSource1” runat=”server”
SelectMethod=”GetContactsByFirstLetter”

TypeName=”Contact” DeleteMethod=”DeleteContact”>
<SelectParameters>

<asp:SessionParameter DefaultValue=”6” Name=”DiaryId”
SessionField=”DiaryId” Type=”Int32” />

<asp:Parameter Name=”FirstLetterOfSurname” Type=”Char” />
</SelectParameters>
<DeleteParameters>

<asp:ControlParameter ControlID=”GridView1” Name=”ContactId”
PropertyName=”SelectedValue”

Type=”Int64” />
</DeleteParameters>

</asp:ObjectDataSource>

The ObjectDataSource control’s DeleteMethod parameter is also hooked to the Contact class’s
DeleteContact. The GridView control has been set to show a link to delete each contact, and it’s this
method that does the actual deleting:

Public Shared Sub DeleteContact(ByVal ContactId As Long)
Dim diaryDBConn As New SqlConnection(conString)
Dim sqlString As String = “DeleteContact”
Dim sqlCmd As New SqlCommand(sqlString, diaryDBConn)
sqlCmd.CommandType = CommandType.StoredProcedure

sqlCmd.Parameters.AddWithValue(“@ContactId”, ContactId)
diaryDBConn.Open()
sqlCmd.ExecuteNonQuery()
diaryDBConn.Close()
sqlCmd = Nothing
diaryDBConn = Nothing

End Sub

The GridView also includes an Edit link, which when clicked navigates the user to the EditContact.aspx
page:

<asp:HyperLinkField DataNavigateUrlFields=”ContactId”
DataNavigateUrlFormatString=”~/SecureDiary/EditContact.aspx?ContactId={0}”

Text=”Edit” />

The corresponding ContactId is passed in the URL as URL data.

Adding a new user involves clicking the Add Contact link on the YourContacts.aspx page. This takes
you to a basic form for adding contact information such as name, e-mail, phone number, and so on. This
page and the EditContact.aspx page are identical in operation except for one important detail: The
EditContact.aspx page retrieves the details of the contact to be edited using the Contact class. This hap-
pens in the Page_Load event:

33

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 33

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

If IsPostBack Then
Dim currentContact As New

Contact(CLng(Request.QueryString(“ContactId”)))
currentContact.FirstName = firstNameTextBox.Text
currentContact.LastName = lastNameTextBox.Text
currentContact.AddressLine1 = addressLine1TextBox.Text
currentContact.City = cityTextBox.Text
currentContact.PostalCode = postalCodeTextBox.Text
currentContact.State = stateTextBox.Text
currentContact.Telephone = telephoneTextBox.Text
currentContact.MobilePhone = mobilePhoneTextBox.Text
currentContact.Email = emailTextBox.Text
currentContact.SaveContact()
currentContact = Nothing
Response.Redirect(“YourContacts.aspx”)

Else
Dim currentContact As New

Contact(CLng(Request.QueryString(“ContactId”)))
firstNameTextBox.Text = currentContact.FirstName
lastNameTextBox.Text = currentContact.LastName
addressLine1TextBox.Text = currentContact.AddressLine1
cityTextBox.Text = currentContact.City
postalCodeTextBox.Text = currentContact.PostalCode
stateTextBox.Text = currentContact.State
telephoneTextBox.Text = currentContact.Telephone
mobilePhoneTextBox.Text = currentContact.MobilePhone
emailTextBox.Text = currentContact.Email
currentContact = Nothing

End If
End Sub

The If statement determines whether this is a postback (the form has been submitted to itself) or
whether the page has just been loaded. If it’s a postback, you need to save the data and then move back
to the main contacts section. If it’s a new page load, it’s necessary to create a new Contact object, and
use the data from that to populate the form fields with the contact information.

The AddContact.aspx page is identical except there’s no need to populate with existing contact data,
because a new contact has no prior data!

Setting up the Online Diary
One of the great things about ASP.NET 2.0 is how easy it is to set up web applications created on one
machine onto another. To install the application on your PC, simply copy the entire directory and files
from the accompanying CD-ROM (or download it from www.wrox.com) onto a directory on your PC
(for example, C:\Websites). In VWD, all you have to do is choose File➪Open Web Site and browse to
the folder where you copied the files. Then press F5 to run it.

34

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 34

Alternatively, if you have IIS installed make the OnlineDiary directory you copied over a virtual direc-
tory and then simply browse to SignOn.aspx.

To find out how to modify the Online Diary application, visit www.wrox.com and download this chapter’s
code, or you can grab it from the companion CD-ROM in the back of the book.

Summary
In this chapter you’ve seen how to create a fully functioning diary and contacts management system, all
with only a little code thanks to ASP.NET 2.0’s new controls and functionality. The new security controls
in particular help save a lot of time and coding. In this chapter they’ve been used to create users and
login control. However, they can also help provide a lot more functionality like creating different types
of user roles, which then allows you to specify what users can and cannot do based on their role. Or you
can let users determine the look and feel of their pages using their account details and ASP.NET 2.0’s
new login and role controls.

Another great control you discovered in this chapter is the ObjectDataSource control. In the past data
source controls have made life nice and easy. But they were quick and dirty, which meant poor code
design, and you had to wave goodbye to a three-tier architecture. Now with the ObjectDataSource
control you can have quick and dirty and three-tier architecture — great news for creating easily main-
tainable, well-designed projects.

In the next chapter you will be creating a file sharing project and learning some more about ASP.NET 2.0’s
great new features.

35

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 35

04_749516 ch01.qxp 2/10/06 9:11 PM Page 36

2
Wrox File Share

If you have ever tried to send a large e-mail attachment and failed, you’re not alone. The idea that
you can attach a file or document to an e-mail message and send it over the Internet is a revolutionary
concept in the history of computer technology. But not so fast! In order to send a document over the
Internet, your Internet connection has to be fast enough to upload the file. In addition, the file has to
be small enough to pass through the Internet connection before a timeout event occurs. If an Internet
service provider decides that there is a limit on the size of files that can be transferred over the
connection they provide, your e-mail capabilities may be greatly hindered. Furthermore, e-mail
attachments can take up space on the server where they reside, and must be treated carefully. Some
of the popular e-mail providers have to balance millions of e-mail users, and must create file storage
policies that are fair and reasonable. Most of the time, there are limits to the size of e-mail attachments
allowed to be sent through the e-mail server. Some providers allow for e-mail attachments up to
10MB; other providers allow for files even larger. This phenomenon has caused problems over the
years because users are not able to send large files to their coworkers and friends over an Internet
connection. What’s a user to do?

A solution to the conundrum of sending large e-mail attachments is to use a go-between web site —
commonly known as a file share — that acts as an online file repository. The web site can send out a
notification as to the file being sent to the server and provide a clickable link for the user to click and
prompt to download the file. In this way, you’re not actually sending an e-mail message, but rather
uploading a file tool web site for propagation. This solution has been copied many times over by
many different web sites. This chapter, then, uses the file share as an opportunity to demonstrate
some of the new and powerful features in ASP.NET 2.0.

The essential features of the Wrox File Share include the following:

❑ The capability to upload a file to the web site, specifying which e-mail address to send the
file to via an e-mail hyperlink for downloading the file.

❑ Sending an e-mail automatically to the recipient, with the custom message and hyperlink
to the download file.

❑ The option to change the text content of the automatically sent e-mail, using specific variables
for the values of the sender, recipient, hyperlink, and a custom message to the recipient.

05_749516 ch02.qxp 2/10/06 9:11 PM Page 37

❑ The capability to specify SMTP server information and e-mail account information as a configu-
ration entry rather than a hard-coded value.

❑ The capability to change the look and feel of the entire web site by simply modifying one entry
in a configuration file.

This chapter also analyzes the various components that make up the web site, including the specific con-
trols that ship with the ASP.NET 2.0 development environments. These controls include the following:

❑ Login control

❑ PasswordRecovery control

❑ LoginStatus control

❑ Menu control

❑ SiteMapDataSource control

❑ Themes

❑ FileUpload control

The section “File Share Design” explores the design of the application in great detail. This includes the
essential elements of involvement with regard to the technology and structure of the web site, as well as
the various classes involved, a detailed look at all of the members of each class, and an explanation
regarding the database tables and their relationships and values.

The section titled “Code and Code Explanation” focuses on the code of each class or module of importance.
Some areas of focus include the WebForms used to upload files to the system, inserting data into the
database tables.

The final section reviews how to extract and customize the Wrox File Share in a development environment,
and how to install it to production.

Using the Wrox File Share
Using the Wrox File Share is extremely easy and naturally intuitive. The web site has only a few functional
areas, because its purpose in life is simply to upload files and send e-mails.

If the Wrox File Share web site has been successfully installed (refer to the section “Setting up the Project”
later in this chapter), you can browse to view the site by going to http://localhost/fileshare. The
screen shown in Figure 2-1 appears.

At the top of the menu are several links to choose from:

❑ Home

❑ About

❑ Contact Us

❑ Admin

38

Chapter 2

05_749516 ch02.qxp 2/10/06 9:11 PM Page 38

Figure 2-1

On the homepage, a total of three steps are required to send a large file to the site. The steps are to capture
the recipient’s e-mail address, the actual file, a comment or message to the recipient, and, optionally, the
e-mail address of the sender. Once these fields have been completed, clicking the Send button performs
the upload and sends the e-mail.

An example of an e-mail sent to a recipient is shown in Figure 2-2.

This e-mail contains a hyperlink that streams via HTTP the file originally sent to the recipient.

Upon clicking the hyperlink, the dialog box depicted in Figure 2-3 appears.

Clicking Save opens the window’s Save As dialog box, prompting you to select a location and filename.
This completes the task of sending a very large file to an e-mail recipient through a file share.

When you click the Admin link in the main menu, you are brought to the login screen if you have not
already logged in to the web site and created a session. This page contains a Login control and a
passwordRecovery control for you to use. Enter in Admin for the username and password# for the
password, then click the Log In button.

39

Wrox File Share

05_749516 ch02.qxp 2/10/06 9:11 PM Page 39

Figure 2-2

Figure 2-3

Once you log in to the site, you are brought to the administration section landing page, displayed in
Figure 2-4.

This interface provides a way to customize the e-mails being sent out to file download recipients. The
variables in use are the hyperlink, message, sender’s e-mail, and recipient’s e-mail. These variables are
replaced as text in the body of the e-mail message, providing a customized e-mail experience.

This chapter covers the essential areas of the development that comprise the application. It walks
through the class files in detail, explaining the methods and properties they expose. In addition, you will
gain insight into the database, data model, and database objects.

The next section addresses the design of the Wrox File Share application, walking through the classes
and database objects.

40

Chapter 2

05_749516 ch02.qxp 2/10/06 9:11 PM Page 40

Figure 2-4

Wrox File Share Design
The Wrox File Share design is based on a few abstractions, including the following:

❑ The file saved to the server is considered as a Resource class.

❑ The methods used to save and get e-mail content are stored within the EmailContent class.

❑ For each business class object there is a data class object that retrieves data from the database or
performs inserts into the database.

❑ The design provides visibility to the existence of business and data layers for the logical separation
to occur.

In the sections that follow, you learn how to upload files and send e-mails; discern the Wrox File Share’s
structure; and understand the data model and database objects, site themes, and the security model. You
also learn about the classes involved and their scope of impact within the web site’s architecture.

Uploading Files
The FileUpload control is used to upload a file to the server. It displays a simple TextBox control next
to a Browse button, which together allow users to select a file from their local machine to upload to the
server. The fileupload1 instance of the FileUpload control exposes properties such as filename or

41

Wrox File Share

05_749516 ch02.qxp 2/10/06 9:11 PM Page 41

filebytes, which prior to ASP.NET 2.0 were very difficult to expose. Also, the FileUpload control
does not automatically save a file to the server once the user chooses it and submits the form that contains
the control. The logic in the submitted form must explicitly save the specified file to disk. This code to
save the file simply called the SaveAs method, which saves the file to a stated path on the local server
file system.

Sending E-Mails
To send e-mails in ASP.NET 2.0, there are numerous areas to consider in the planning and development
process. The first area to be certain of is the use of a valid SMTP mail server, with a valid e-mail account.
The e-mail account to be used must allow permissions to relay mail.

The classes provided by ASP.NET 2.0 are maintained out of the System.Net.Mail class, providing the
essential properties and contents of a mail message. The SmtpClient subclass sends the e-mail to the
SMTP server that you designate.

The Web.config file provides the e-mail settings necessary for the configuration of the SMTP server.
These settings are as follows:

❑ EmailFrom

❑ EmailSubject

❑ SmtpServer

❑ MailUser

❑ MailPassword

❑ MailPort

❑ EmailFormatSelected

These are accessed from the Utilities class, formulating the contents of a struct variable. This struct
variable is declared toward the top of the Utilities class, displayed here:

‘’’ <summary>
‘’’ MailSettings is a struct used to define the mail server information
‘’’ </summary>
Public Structure MailSettings

Public MailServer As String
Public MailPort As Integer
Public MailFrom As String
Public MailUser As String
Public MailPassword As String

End Structure

The actual sending of the e-mail is performed in the Utilities class, within the following function:

‘’’ <summary>
‘’’ SendEmail is used to send an email, with the established settings
‘’’ </summary>
Public Shared Sub SendEmail(ByVal MsgTo As String, ByVal MsgFrom As String, _

42

Chapter 2

05_749516 ch02.qxp 2/10/06 9:11 PM Page 42

ByVal MsgSubject As String, ByVal MsgText As String)

Dim SmtpSettings As MailSettings
SmtpSettings = GetSmtpSettings()
Dim SmptCl As New SmtpClient(SmtpSettings.MailServer, _

SmtpSettings.MailPort)
SmptCl.Credentials = GetCredentials(SmtpSettings)
Dim MailMsg As New MailMessage(MsgFrom, MsgTo)
MailMsg.Subject = MsgSubject
MailMsg.Body = MsgText

SmptCl.Send(MailMsg)
End Sub

This concludes the design and usage of the e-mail classes built into ASP.NET 2.0, and how the Wrox File
Share implements the e-mail functionality.

Structure of the Site
The ASP.NET 2.0 web site file structure has been standardized a bit since its predecessor versions. These
standardizations have to do with the naming conventions given to the folders within the site. The sections
of the project are listed in the following table:

Section Description

App_Code Houses the business layer class (resource.vb) and the data layer class
(resourceDB.vb).

App_Data The standard .NET folder for database files.

App_Themes The themes folder, containing two themes for use within the site.

ContentFiles The standard ASPX WebForm files for displaying content.

Controls Stores all user controls.

FileStorage The folder for storing uploaded files to be e-mailed to a recipient.

Images Stores images for the header or any other pages.

Management Stores the secured administrative WebForm pages.

[miscellaneous files] These include the login page, config file, sitemap file, and master
page file at the root of the site.

One of the essential pieces of the Wrox File Share web site is the database. This database is made up of a
SQL Server 2005 Express file, which contains a full representation of the database objects within it. The next
section highlights the areas of focus within the database file, namely the stored procedures and tables.

43

Wrox File Share

05_749516 ch02.qxp 2/10/06 9:11 PM Page 43

Data Model and Database Objects
The data model is very simple in nature; it only needs to store three basic data elements:

❑ Email

❑ Resource

❑ Contact

Each resource contains references to the Email contact table, with the e-mail addresses of the contacts
that have sent and received the e-mails from files uploaded to the system. Figure 2-5 displays the dia-
gram of the database tables involved.

Figure 2-5

Following is a detailed view of each of the three tables.

The Email Table

Field Name Data Type Description

id Int The unique identifier for this record.

text varchar(MAX) The actual e-mail content stored as text, which the user
can edit in the administrative section of the web site.

The Contact Table

Field Name Data Type Description

id Int The unique identifier for this record.

email Varchar(200) The e-mail address of the contact.

44

Chapter 2

05_749516 ch02.qxp 2/10/06 9:11 PM Page 44

The Resource Table

Field Name Data Type Description

id Int The unique identifier for this record.

filename varchar(300) The question ID to which this response applies.

fromContactID Int The ID of the contact record that sent the file.

toContactID Int The ID of the contact record that received the file.

message Varchar(1000) The message that the sender provided with the file
being uploaded.

datesent Datetime The datetime stamp at the time the file is uploaded.

In addition to these three tables, a number of stored procedures are in use. They follow a consistent nam-
ing pattern with the other chapters, as shown here:

❑ sprocTableNameSelectList

❑ sprocTableNameSelectSingleItem

❑ sprocTableNameInsertUpdateItem

In such fashion, the following stored procedures are used in the application:

❑ sprocEmailInsertUpdateItem

❑ sprocEmailSelectSingleItem

❑ sprocResourceInsertUpdateItem

❑ sprocResourceSelectSingleItem

The naming convention allows you to easily and quickly find the stored procedures that apply to a spe-
cific table, and whether they are selects, inserts, updates, or deletes.

There are a few stored procedures that you need to walk through. The first stored procedure, sproc
ResourceSelectSingleItem, is a basic SELECT statement based on the ID parameter, which selects a
single resource record from the database and returns it to the caller:

ALTER PROCEDURE dbo.sprocResourceSelectSingleItem
/* ‘===
‘ NAME: sprocResourceSelectSingleItem
‘ DATE CREATED: October 19, 2005
‘ CREATED BY: Shawn Livermore (shawnlivermore.blogspot.com)
‘ CREATED FOR: ASP.NET 2.0 - Instant Results
‘ FUNCTION: Gets a specific resource from the DB
‘===

45

Wrox File Share

05_749516 ch02.qxp 2/10/06 9:11 PM Page 45

*/
(@id int)

as

select * from Resource where id = @id

The preceding stored procedure is called from the ResourceDB.vb data layer, in the
GetResourceFileName function.

In similar fashion, the next stored procedure, sprocEmailSelectSingleItem, is used to select a single
record from the Email table. There is no ID parameter in this one, because it assumes you will be storing
only one record in this table for now. If you choose to add different e-mail versions or types in the system
at a later time, this is the place to manage that information:

ALTER PROCEDURE dbo.sprocEmailSelectSingleItem
/* ‘===
‘ NAME: sprocEmailSelectSingleItem
‘ DATE CREATED: October 19, 2005
‘ CREATED BY: Shawn Livermore (shawnlivermore.blogspot.com)
‘ CREATED FOR: ASP.NET 2.0 - Instant Results
‘ FUNCTION: Gets the html and text message body from the DB
‘===

*/

as

select top 1 * from Email

Moving into the other two stored procedures, the level of complexity increases slightly. The following is
the next stored procedure, sprocEmailInsertUpdateItem, which is used to update the e-mail text in
the Email table’s one record. It accepts one parameter, @text, which is simply the text content of the
template e-mail that is used to send e-mails to recipients:

ALTER PROCEDURE dbo.sprocEmailInsertUpdateItem
/* ‘===

‘ NAME: sprocEmailInsertUpdateItem
‘ DATE CREATED: October 21, 2005
‘ CREATED BY: Shawn Livermore (shawnlivermore.blogspot.com)
‘ CREATED FOR: ASP.NET 2.0 - Instant Results
‘ FUNCTION: Inserts or Updates the email content to the DB
‘===

*/
(@text varchar(MAX))

AS

UPDATE
Email
SET
[text] = @text

46

Chapter 2

05_749516 ch02.qxp 2/10/06 9:11 PM Page 46

The final stored procedure, sprocResourceInsertUpdateItem, is by far the most complex one, but not
to worry. The basic idea of it is actually quite simple:

ALTER PROCEDURE dbo.sprocResourceInsertUpdateItem
/* ‘===

‘ NAME: sprocResourceInsertUpdateItem
‘ DATE CREATED: October 19, 2005
‘ CREATED BY: Shawn Livermore (shawnlivermore.blogspot.com)
‘ CREATED FOR: ASP.NET 2.0 - Instant Results
‘ FUNCTION: Inserts or Updates a resource into the DB
‘===

*/
(@id int,
@filename varchar(300),
@fromContactEmail varchar(300),
@toContactEmail varchar(300),
@message varchar(1000))

AS

DECLARE @returnValue int
Declare @fromContactID int
Declare @toContactID int

/*
----------- fromContactID --------------
*/
--insert the contact records if they do not already exist...
if((select count(*) from contact where email = @fromContactEmail)=0)

begin
insert into contact (email) values (@fromContactEmail)
SET @fromContactID = SCOPE_IDENTITY() --extract the contact id from the

insert
end

else
begin

--extract the contact id from the insert
SET @fromContactID = (select id from contact where email = @fromContactEmail)

end

/*
----------- toContactID --------------
*/
if((select count(*) from contact where email = @toContactEmail)=0)

begin
insert into contact (email) values (@toContactEmail)
SET @toContactID = SCOPE_IDENTITY() --extract the contact id from the insert

end
else

begin
--extract the contact id from the insert
SET @toContactID = (select id from contact where email = @toContactEmail)

end

-- Insert a new resource record

47

Wrox File Share

05_749516 ch02.qxp 2/10/06 9:11 PM Page 47

IF (@id IS NULL)
BEGIN
INSERT INTO
Resource
(
filename,
fromContactID,
toContactID,
message

)
VALUES
(
@filename,
@fromContactID,
@toContactID,
@message

)
SET @returnValue = SCOPE_IDENTITY()

END
ELSE
BEGIN

UPDATE
Resource
SET
filename = @filename,
fromContactID = @fromContactID,
toContactID = @toContactID,
message = @message

WHERE
Id = @id

SET @returnValue = @id
END

select @returnValue

This procedure is used to insert the resource information into the database, add new contacts to the
Contact table, and resources to the Resource table. It uses the upsert methodology, wherein it will pro-
vide an update if the record already exists, or an insert if it does not.

sprocResourceInsertUpdateItem follows these specific steps:

1. Checks to see if the e-mail address of the sender (@fromContactEmail) is not already in the
system:

/*
----------- fromContactID --------------
*/
--insert the contact records if they do not already exist...
if((select count(*) from contact where email = @fromContactEmail)=0)

2. If not, the stored procedure adds the e-mail address as new contact record, extracting the unique ID
value to set the the @fromContactID locally declared variable for later insertion into the Resource
table. If the record does exist, it performs a select statement to populate @fromContactID:

48

Chapter 2

05_749516 ch02.qxp 2/10/06 9:11 PM Page 48

begin
insert into contact (email)
values (@fromContactEmail)
SET @fromContactID = SCOPE_IDENTITY()
--we extracted the contact id from the insert

end
else

begin
--extract the contact id from the insert
SET @fromContactID =

(select id from contact
where email = @fromContactEmail)

end

* The next section of the stored procedure does the exact same thing, except this time it is
with the @toContactEmail parameter, populating the @toContactID variable.

3. After you have valid ContactIDs, you can focus on the insertion of the resource record into the
database. The following section is used to insert a new resource record into the Resource table,
returning the new ID of the resource into the @resourceID variable:

-- Insert a new resource record
IF (@id IS NULL)
BEGIN
INSERT INTO
Resource
(
filename,
fromContactID,
toContactID,
message

)
VALUES
(
@filename,
@fromContactID,
@toContactID,
@message

)
SET @returnValue = SCOPE_IDENTITY()

END

4. The following else statement immediately follows this if clause, with the case in which the
@id parameter is not null. This would be the case if the application passed an ID to the stored
procedure, indicating that a resource record already existed, and the stored procedure is
expected to perform an update, instead of an insert:

ELSE
BEGIN

UPDATE
Resource
SET
filename = @filename,
fromContactID = @fromContactID,

49

Wrox File Share

05_749516 ch02.qxp 2/10/06 9:11 PM Page 49

toContactID = @toContactID,
message = @message

WHERE
Id = @id

SET @returnValue = @id
END

select @returnValue

❑ The preceding code performs the UPDATE query, and returns the resulting @resourceID
variable. Once the @resourceID variable is sent back to the caller (the data layer), the
process for inserting a resource into the system is complete.

These are the stored procedures used within the Wrox File Share, and are entirely common for this type
of application.

Themes and Skins
The Wrox File Share project provides a simple way to apply themes and skins to each page of the site,
without modifying any HTML markup sections on any page (even the master page is safe from special
control-based HTML markup). You can apply a theme to the entire web site by modifying the Web.config
file to point to the name of your theme (assuming the theme exists in your project under the app_themes
folder). This is carried out within each ASP.NET form by using the following code in each of the form’s
pre-initialization events:

‘’’ <summary>
‘’’ this preinit event fires to initialize the page. It allows for the
‘’’ theme and title to be set for this page, which actually pulls from
‘’’ the web.config setting via the shared Config class’s exposed properties.
‘’’ </summary>
Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.PreInit
Page.Theme = Config.CurrentTheme
Page.Title = Config.PageTitle

End Sub

This basically accesses the config class’s properties (pulled from the Web.config file), and sets the page’s
theme member to be the current theme value. In this way, you can maintain a consistent experience
throughout the web site, with only one change needed to the Web.config to change the look and feel of the
entire user experience! You are probably glad to hear that — I know I am. The exact place where you would
change the theme for the site is in the appSettings section of the Web.config, as displayed here:

<!--
<add key=”CurrentTheme” value=”CleanBlue” />

-->
<add key=”CurrentTheme” value=”CleanRed” />

This code displays one of the theme entries as commented out, and one of them as active. Simply swap
the two values to change the theme.

50

Chapter 2

05_749516 ch02.qxp 2/10/06 9:11 PM Page 50

Security Model
The Wrox File Share uses ASP.NET 2.0 Forms Authentication with a SQL Server Security Provider. The
initial designation to use this provider from within the ASP.NET Security Administration tool generates
a new security database, which is included in the project and used to house all of the user account infor-
mation and security settings. This security model implements Forms Authentication intrinsically within
the various new ASP.NET 2.0 security controls, such as those used to log in, display login status, and
recover your password. Fortunately, the heavy lifting is already done here (if there is any!), and a stan-
dard security starting point created for you. Using the ASP.NET Security Administration tool allows for
further customization and changes to your settings as you see fit, but is not necessary to run the project
properly with the basic Admin user.

The security model mentioned is utilized and referenced in several areas of the application. One such
area is in reference to the Management folder of the site. The security model allows you to log in to the
web site and become an authenticated user. The login.aspx form is loaded automatically whenever you
try to access any of the ASPX files in the Management folder without first being unauthenticated. This is
a clear glimpse at the new ASP.NET 2.0 security model implemented via the Role and Membership
Providers. The configuration is such that the only provision to implement such security is an instance of
the ASP.NET Login control:

<asp:Login ID=”Login1” runat=”server” />

As a practical use, this provides a clear example of a secure web site folder and the use of role-based
access to pages within that folder via the ASP.NET 2.0 Configuration Tool. This tool is essentially used
simply for security-rights management. The ASP.NET 2.0 Configuration Tool can be accessed within
Visual Studio by choosing Website➪ASP.NET Configuration from the main menu. Once the tool fully
loads you’ll see a Security tab. Clicking the Security tab allows you to modify the settings of any folder
within your site to allow or restrict access based on roles that you can define and assign users to. The
output of this effort generates the Web.config file that lies within the folder that you specified to restrict
access to. An example of this Web.config file output is shown here:

<?xml version=”1.0” encoding=”utf-8”?>
<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>

<system.web>
<authorization>

<allow roles=”Admin” />
<deny users=”?” />

</authorization>
</system.web>

</configuration>

This configuration file uses two main entries as the meat of the security settings. These are essentially
XML statements that define the security rights for that folder, hierarchically within the web site, overrid-
ing the web site’s root Web.config, as well as the machine.config on the server. In this file, the <deny
users=”?” /> phrase means that the folder should deny any unauthenticated users, denoted by the
question mark. Next, the <allow roles=”Admin” entry represents the capability of the folder to allow
access to Admin role.

51

Wrox File Share

05_749516 ch02.qxp 2/10/06 9:11 PM Page 51

Only one account is created for use within the Wrox File Share, and one role that the account is assigned
to. These are as follows:

Username Password Account Description

Administrator password# This user is assigned to the Administrator role.

The following role is already in the security database and referenced within the application:

Role Role Description

Administrator This role has the ability to login to the administrative area, editing the
contents of the e-mail text.

You can control access to form elements, functions, and file folders using the security roles implemented
via the ASP.NET Configuration Tool, through your own scripted logic in VB.NET. This basic use of the
ASP.NET 2.0 security model performs the bare minimum in application security.

Next, you have a chance to dive into the classes of the application, learning all about the layered
approach to the flow of information within the site.

Classes Involved
The Wrox File Share contains some essential classes that represent the business and data layers of the
application. In these basic class structures, you will find the basic methods and properties that provide
the bulk of the features in the application.

The EmailContent Class
The EmailContent class (see Figure 2-6) is essentially the class that allows for the saving and retrieving
of e-mail content text to and from the database.

Figure 2-6

52

Chapter 2

05_749516 ch02.qxp 2/10/06 9:11 PM Page 52

The EmailContent class’s methods are outlined in the following table:

Method Return Type Description

SaveEmailContent() n/a Saves the e-mail content, via the EmailContentDB
class.

GetEmailContent() String Retrieves the e-mail from the database, via the
EmailContentDB class.

The Resource Class
The Resource class (see Figure 2-7) is used to perform the bulk of the object provisioning for the business
layer of the application. Its methods are accessible as public and shared for ease of use within the various
forms and controls of the application. This means that you do not have to instantiate an instance of the
Resource class in order call its methods. Instead, simply use the syntax of Resource.MethodName() in
any VB.NET WebForm or control of the application to execute the function.

Figure 2-7

The following table displays the accessible members of the Resource class:

Method Return Type Description

GetEmailBody() String Returns the HTML body of the e-mail message to
be sent out.

GetResourceFileName() String Returns the filename of the class by sending in the
resource ID.

SaveResource() Integer Saves the new resource (file) to the database, pass-
ing in the sender information, receiver
information, a message, and the filename.

53

Wrox File Share

05_749516 ch02.qxp 2/10/06 9:11 PM Page 53

The Config Class
The Config class, shown in Figure 2-8, is used as the configuration manager of the application. It is
essentially the main access point for all configuration settings that any of the application tiers may
require access to.

Figure 2-8

The following table displays the accessible members of the Config class:

Property Return Type Description

ConnectionString() String The connection string property that pulls from
Web.config.

CurrentTheme() String The current theme of the web site as defined in
the Web.config file.

EmailFormatSelected() String The extendable format variable for the type of
e-mail format to be used. Text is the only value in
use so far, but HTML may be desired.

EmailSubject() String The e-mail subject line for all outgoing e-mails
notifying users that they have been sent a file to
download.

httpDownloadPath() String The configuration entry determining the
httpDownloadPath http://localhost/
FileShare/, which is set at the Web.config.

PageTitle() String The HTML title value that each page displays,
from the Web.config file.

ShareLocalFolderPath() String The local folder file path for all files to be uploaded
onto the server from the Web.config file.

SmtpServer() String The configuration entry determining the SMTP
server name and address.

54

Chapter 2

05_749516 ch02.qxp 2/10/06 9:11 PM Page 54

The Utilities Class
The Utilities class is used to house the e-mail sending functionality of the Wrox File Share application
(see Figure 2-9).

Figure 2-9

The following table displays the accessible members of the Utilities class:

Property Return Type Description

GetCredentials() System.Net Creates and returns a System.Net
.NetworkCredential .NetworkCredential class object

reference with the applicable config values.

GetSmtpSettings() MailSettings (struct) Used to retrieve the Web.config file values
and set them to the struct instance
properties.

SendEmail() n/a Used to send an e-mail, with the established
settings.

Now you have seen the classes involved, and their applicable method calls. The next section, “Code and
Code Explanation,” dives deep into the development and walks you through all of the essential pieces of
code you need to understand.

Code and Code Explanation
This section explains each of the essential code files in the Wrox File Share project. You look in detail at
the files in the each of the different folders and learn how they interact and are used across the project.

55

Wrox File Share

05_749516 ch02.qxp 2/10/06 9:11 PM Page 55

Root Files
The root of the Wrox File Share contains several important files, including the main ASPX shell-pages,
and the configuration and formatting pages.

Web.config
The Web.config stores vital configuration entries used within the application. One entry, named as the
SqlServerConnectionString, controls the connection to the SQL Server 2005 Express database file
FileShareDB.mdf, as shown here:

<connectionStrings>
<add name=”ConnectionString” connectionString=”Data

Source=(local)\SqlExpress;AttachDbFilename=|DataDirectory|\FileShareDB.mdf;Integrat
ed Security=True;User Instance=True” providerName=”System.Data.SqlClient”/>

</connectionStrings>

Web.config also contains information managing the SMTP e-mail settings for sending out e-mails:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<appSettings>

<add key=”EmailFrom” value=”admin@wroxfileshare.com”/>
<add key=”EmailSubject” value=”File Ready for Download!”/>
<add key=”SmtpServer” value=”127.0.0.1”/>
<add key=”MailUser” value=”myalias”/>
<add key=”MailPassword” value=”mypassword”/>
<add key=”MailPort” value=”25”/>
<add key=”EmailFormatSelected” value=”Text”/>
<add key=”PageTitle” value=”Wrox File Sharing Website”/>
<add key=”ShareLocalFolderPath”

value=”C:\inetpub\wwwroot\FileShare\FileStorage\”/>
<add key=”httpDownloadPath” value=”http://localhost/FileShare/”/>
<!--
<add key=”CurrentTheme” value=”CleanBlue” />
-->
<add key=”CurrentTheme” value=”CleanRed”/>

</appSettings>

These SMTP configuration entries are where you can specify the mail server settings that your application
will use to send out e-mails to the specified recipients. The Web.config file is also used to provide easy
modification to the themes in use for the entire site. More information on this is located in the design
portion of this chapter, in the section “Themes and Skins.”

config.vb
The Config class is used as an available business object for values and settings through visibility of
some static members. Its members are listed as properties in order to abstract the location in which these
values are stored. All of the values for the properties are stored in the Web.config file, with this Config
class to retrieve them when they are needed:

Imports Microsoft.VisualBasic

Public Class Config
‘’’ <summary>

56

Chapter 2

05_749516 ch02.qxp 2/10/06 9:11 PM Page 56

‘’’ The connection string property that pulls from the web.config
‘’’ </summary>
Public Shared ReadOnly Property ConnectionString() As String

Get
Return

ConfigurationManager.ConnectionStrings(“ConnectionString”).ConnectionString
End Get

End Property
‘’’ <summary>
‘’’ The current theme of the website as defined in the web.config file
‘’’ </summary>
Public Shared ReadOnly Property CurrentTheme() As String

Get
Return ConfigurationManager.AppSettings(“CurrentTheme”).ToString()

End Get
End Property
‘’’ <summary>
‘’’ The HTML title value that each page displays, as defined here from the

web.config file
‘’’ </summary>
Public Shared ReadOnly Property PageTitle() As String

Get
Return ConfigurationManager.AppSettings(“PageTitle”).ToString()

End Get
End Property
‘’’ <summary>
‘’’ The Local Folder File-Path for all files to be uploaded to on the server
‘’’ as defined here from the web.config file
‘’’ </summary>
Public Shared ReadOnly Property ShareLocalFolderPath() As String

Get
Return

ConfigurationManager.AppSettings(“ShareLocalFolderPath”).ToString()
End Get

End Property
‘’’ <summary>
‘’’ The email subject line for all outgoing emails notifying users that they

have been sent a file to download...
‘’’ </summary>
Public Shared ReadOnly Property EmailSubject() As String

Get
Return ConfigurationManager.AppSettings(“EmailSubject”).ToString()

End Get
End Property
‘’’ <summary>
‘’’ The configuration entry determining whether the email body is in HTML or

plain text...
‘’’ </summary>
Public Shared ReadOnly Property EmailFormatSelected() As String

Get
Return

ConfigurationManager.AppSettings(“EmailFormatSelected”).ToString()
End Get

End Property
‘’’ <summary>

57

Wrox File Share

05_749516 ch02.qxp 2/10/06 9:11 PM Page 57

‘’’ The configuration entry determining the SMTP Server Name / Address ...
‘’’ </summary>
Public Shared ReadOnly Property SmtpServer() As String

Get
Return ConfigurationManager.AppSettings(“SmtpServer”).ToString()

End Get
End Property
‘’’ <summary>
‘’’ The configuration entry determining the httpDownloadPath...
‘’’ the default local value is : “http://localhost/FileShare/” which is set at

the web.config
‘’’ </summary>
Public Shared ReadOnly Property httpDownloadPath() As String

Get
Return ConfigurationManager.AppSettings(“httpDownloadPath”).ToString()

End Get
End Property

End Class

As the Config class displays, the properties are marked as Public Shared ReadOnly, which allows
them to be accessed from anywhere in the project by the config-dot notation. An example of this would
be config.ConnectionString(). This would return the connection string from the Config class,
without instantiating a Config class object first.

Resource.vb
The Resource class is used to retrieve and save the resource information being sent up to the web site.
The class acts as a business layer and provides a level of abstraction between the requests for database
records and the user interface.

By using #Region tags in the Resource.vb class file, the Visual Studio IDE allows the page to be grouped
into organized sections. Sections that are commonly used to group the code in this way include Variables,
Constructors, Methods, and Properties. This does not impact the .NET assemblies in any way, but is sim-
ply a great way to maintain organized logic. Figure 2-10 is a visual display of the regionalized code as it is
displayed within the Visual Studio IDE.

Figure 2-10

One of the more important method calls of the resource is the SaveResource method. The code for this
is as follows:

58

Chapter 2

05_749516 ch02.qxp 2/10/06 9:11 PM Page 58

‘’’ <summary>
‘’’ Saves the <see cref=”Resource” /> by sending in the resource fields
‘’’ </summary>
‘’’ <param name=”filename”>The filename of the Resource.</param>
‘’’ <param name=”fromContactEmail”>The email of the sender </param>
‘’’ <param name=”message”>The message of the Resource.</param>
‘’’ <param name=”toContactEmail”>The email of the recipient</param>
‘’’ <param name=”ID”>The optional param: the id of the Resource.</param>
Public Shared Function SaveResource(ByVal filename As String, ByVal

fromContactEmail As String, ByVal toContactEmail As String, ByVal message As
String) As Integer

Return ResourceDB.SaveResource(filename, fromContactEmail, toContactEmail,
message)

End Function

This method provides the means by which to hand off a Resource class object to the data tier for
processing. It accepts five parameters:

❑ filename

❑ fromContactEmail

❑ message

❑ toContactEmail

❑ ID

These parameters represent the entire view of the resource class as it exists in the system.

resourceDB.vb
The resourceDB class is essentially the data layer for the application. It provides method calls to retrieve
information from the database and insert or update data within the database as well. This class serves as
the only file or object that will have access to the database files. In this way, you can isolate data-specific
operations outside of the business logic layer. In so doing, you can see that it protects a developer from
writing duplicate data access code and lends itself well to the function of maintaining organized and
structured data access logic. This also supports the application being logically separated into tiers, or
layers, with the deliberate feasibility of migrating and expanding the application onto separate servers at
any point in time.

In line with the documented function call from the Resource class, the resourceDB class contains a
Save method, as displayed here:

‘’’ <summary>
‘’’ Saves the <see cref=”Resource” /> to the database
‘’’ </summary>
‘’’ <param name=”filename”>The filename of the Resource.</param>
‘’’ <param name=”fromContactEmail”>The email of the sender</param>
‘’’ <param name=”message”>The message of the Resource.</param>
‘’’ <param name=”toContactEmail”>The email of recipient.</param>
‘’’ <param name=”ID”>The optional param: the id of the Resource.</param>
Public Shared Function SaveResource(ByVal filename As String, ByVal

fromContactEmail As String, ByVal toContactEmail As String, ByVal message As
String, Optional ByVal ID As Integer = Nothing) As Integer

59

Wrox File Share

05_749516 ch02.qxp 2/10/06 9:11 PM Page 59

Using mConnection As New SqlConnection(Config.ConnectionString)

Dim mResourceID As Integer

‘Create a command object
Dim mCommand As SqlCommand = New

SqlCommand(“sprocResourceInsertUpdateItem”, mConnection)

‘set it to the type of ‘stored procedure’
mCommand.CommandType = CommandType.StoredProcedure

‘add in the parameters: the surveyID,
‘the question text, and the possible choices (A,B,C,or D)
If ID > 0 Then

mCommand.Parameters.AddWithValue(“@id”, ID)
Else

mCommand.Parameters.AddWithValue(“@id”, DBNull.Value)
End If
mCommand.Parameters.AddWithValue(“@filename”, filename)
mCommand.Parameters.AddWithValue(“@fromContactEmail”, fromContactEmail)
mCommand.Parameters.AddWithValue(“@toContactEmail”, toContactEmail)
mCommand.Parameters.AddWithValue(“@message”, message)

‘open the connection and execute the stored procedure
mConnection.Open()
mResourceID = mCommand.ExecuteScalar()
mConnection.Close()

Return mResourceID

End Using

End Function

Another method of interest is the GetEmailBody() method, returning a string variable of the body of
the e-mail template used for sending out e-mails to the recipient of the file share sender. The following is
an excerpt of this method:

‘’’ <summary>
‘’’ Returns the HTML body of the email message to be sent out
‘’’ </summary>
‘’’ <param name=”msg”>The additional message provided by
‘’’ the user to be within the body of the email.</param>
Public Shared Function GetEmailBody(ByVal msg As String, _

ByVal id As Integer, ByVal SenderEmail As String, _
ByVal RecipientEmail As String) As String
Dim emailBody As String = “”
Try

Using mConnection As New SqlConnection(Config.ConnectionString)

Dim mLink As String
mLink = Config.httpDownloadPath & “Download.aspx?resourceID=”

Dim mCommand As SqlCommand = New _
SqlCommand(“sprocEmailSelectSingleItem”, mConnection)

60

Chapter 2

05_749516 ch02.qxp 2/10/06 9:11 PM Page 60

mCommand.CommandType = CommandType.StoredProcedure
mConnection.Open()
Using mDataReader As SqlDataReader = _
mCommand.ExecuteReader(CommandBehavior.CloseConnection)
If mDataReader.Read() Then
‘get the email body template content from the email table
emailBody = mDataReader.GetString(_

mDataReader.GetOrdinal(Config.EmailFormatSelected))
‘replace the custom msg area with the message from the sender
emailBody = emailBody.Replace(“[msg]”, msg)
emailBody = emailBody.Replace(“[link]”, mLink & id.ToString())
emailBody = emailBody.Replace(“[sender]”, SenderEmail)
emailBody = emailBody.Replace(“[recipient]”, RecipientEmail)

End If
mDataReader.Close()

End Using
End Using

Catch ex As Exception
‘By calling the “Throw” statement, you are raising the error to
‘the global.asax file, which will use the default error handling
‘page to process/display the custom error to the user
Throw

End Try
Return emailBody

End Function

The preceding page logic performs the following steps:

1. Creates a new SqlCommand object, passing in the stored procedure name and the connection:

Using mConnection As New SqlConnection(Config.ConnectionString)

2. Creates a local variable used to concatenate the real hyperlink based on the configuration-
driven design:

Dim mLink As String
mLink = Config.httpDownloadPath & “Download.aspx?resourceID=”

3. Sets the CommandType to be StoredProcedure, and provides the name of
sprocEmailSelectSingleItem:

Dim mCommand As SqlCommand = New SqlCommand(“sprocEmailSelectSingleItem”,
mConnection)
mCommand.CommandType = CommandType.StoredProcedure

4. Creates a new SqlDataReader:

Using mDataReader As SqlDataReader = _
mCommand.ExecuteReader(CommandBehavior.CloseConnection)

5. Calls the command’s Execute method. This executes the sprocEmailSelectSingleItem
stored procedure and returns the result as a string value in a one-record row:

mCommand.ExecuteReader(CommandBehavior.CloseConnection)

61

Wrox File Share

05_749516 ch02.qxp 2/10/06 9:11 PM Page 61

6. Assigns the ordinal value of data within the DataReader to a string variable, emailBody:

If mDataReader.Read() Then
‘get the email body template content from the email table
emailBody = mDataReader.GetString(_
mDataReader.GetOrdinal(Config.EmailFormatSelected))

7. Replaces the values of the dynamic variables for the text message from the sender, the URL for
the hyperlink used to download the file, the e-mail address of the sender, and the e-mail address
of the recipient:

‘replace the custom msg area with the message from the sender
emailBody = emailBody.Replace(“[msg]”, msg)
emailBody = emailBody.Replace(“[link]”, mLink & id.ToString())
emailBody = emailBody.Replace(“[sender]”, SenderEmail)
emailBody = emailBody.Replace(“[recipient]”, RecipientEmail)

8. Returns the string value to the caller:

Return emailBody

This provides the desired abstracted functionality to retrieve the e-mail message body from the database,
and return this text content to caller.

WebForms
The WebForms are standard ASPX pages that contain the client-side graphical user interface of the applica-
tion. A few WebForms are of particular importance within the project, as noted in the following sections.

Default.aspx
The Default.aspx file is of course used as the first page that loads when the site is accessed. Within this
page are the controls used to capture the essential file information for the uploading of the file into the
system.

Several specific functions from this page should be mentioned. The first one is a common event with logic
that is somewhat redundant throughout the application’s ASPX pages. This is the page initialize
event, displayed here:

‘’’ <summary>
‘’’ this preinit event fires to initialize the page. It allows
‘’’ for the theme and title to be set for this page, which
‘’’ actually pulls from the web.config setting via the shared
‘’’ Config class’s exposed properties.
‘’’ </summary>
Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.PreInit
Page.Theme = Config.CurrentTheme
Page.Title = Config.PageTitle

End Sub

The Page.Theme is the theme property of the Page reference. By setting this theme property to the
Config class’s exposed CurrentTheme value, you are assigning a theme at run time. This model of

62

Chapter 2

05_749516 ch02.qxp 2/10/06 9:11 PM Page 62

assignment is ideal, because each page can dynamically utilize the theme that is controlled via the
Web.config file, without requiring any other file changes.

The other area of special interest is the btnSend button’s Click event handler. This provides the
uploading and saving of the information, and sends out an e-mail to the recipient.

Specifically, three processes provide the sending or capturing of the file. They are as follows:

❑ Text data inserted into the database about the file.

❑ The actual file uploaded to the storage folder on the server.

❑ An e-mail sent to the recipient with notification of the file being ready to download.

The code for the Click event is as follows:

Protected Sub btnSend_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles btnSend.Click

If FileUpload1.FileName <> “” Then
‘upload the file to the server...
FileUpload1.SaveAs(Config.ShareLocalFolderPath _

+ FileUpload1.FileName)
‘save the info to the database...
Dim ResourceID As Integer = Resource.SaveResource(_

FileUpload1.FileName, txtSenderEmail.Text, _
txtRecipientEmail.Text, txtMessage.Text)

‘get the body of the email message...
Dim emailBody As String = Resource.GetEmailBody(_

txtMessage.Text, ResourceID, txtSenderEmail.Text, _
txtRecipientEmail.Text)

‘send an email to the recipient...
Utilities.SendEmail(txtRecipientEmail.Text, _

txtSenderEmail.Text, Config.EmailSubject, emailBody)
Server.Transfer(“UploadComplete.aspx”, True)

End If
End Sub

This event performs the most essential portion of logic within the application by far, and is the crux of
the programming effort to host a file share application of this kind. The event is so critical because it
performs the specific upload, save, and e-mail functionality that the application is known for. If you
want to add additional features to the application in a big way, you will probably want to start here and
work your way into the deeper layers of the application.

Login.aspx
The Login page contains a Login control and a PasswordRecovery control. The Login page is located at
the root of the web site and does not use a master page. The Login controls contain HTML markup
(shown in the following code) that defines the specific values for the destination page and text values of
the controls.

<fieldset style=”height: 128px; width: 270px;”>
<asp:Login ID=”Login1” runat=”server” DestinationPageUrl=

“~/Management/ManageEmail.aspx”>

63

Wrox File Share

05_749516 ch02.qxp 2/10/06 9:11 PM Page 63

</asp:Login>
</fieldset>

<fieldset style=”height: 118px; width: 270px;”>
<asp:PasswordRecovery ID=”PasswordRecovery1” runat=”server”>
</asp:PasswordRecovery>
</fieldset>

The preceding HTML markup contains the control definitions for the Login and PasswordRecovery
controls and their properties.

Download.aspx
The Download.aspx WebForm is used to provide access to the files stored within the web site, without
forcing the user to view a web page filled with advertisements.

The Page_Load event of the page is as follows:

‘’’ <summary>
‘’’ this load event fires to process the display of
‘’’ the download dialogue for the file
‘’’ </summary>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load
DisplayDownloadDialog(Config.ShareLocalFolderPath & _

Resource.GetResourceFileName(Request.QueryString(“resourceID”)))
End Sub

This event calls the DisplayDownloadDialog function, passing in the Config.ShareLocalFolder
Path and a querystring variable, resourceID. The Config.ShareLocalFolderPath is the property
exposed by the Config class that refers to the local file share on the web site. This allows for a direct out-
put of the file object programmatically, because it is a local pointer to the file on the server. The
resourceID querystring variable is the ID of the resource record the page will be referencing as it
attempts to return a downloadable file to the client. Each file on the Wrox File Share has an ID number,
known as the resourceID. It is this number that allows you to query the database and extract the name
of the file to be downloaded.

The following is the DisplayDownloadDialog function from the download.aspx.cs WebForm code-
behind page:

Sub DisplayDownloadDialog(ByVal PathVirtual As String)
Dim strPhysicalPath As String
Dim objFileInfo As System.IO.FileInfo
Try

‘strPhysicalPath = Server.MapPath(PathVirtual)
strPhysicalPath = PathVirtual
‘exit if file does not exist
If Not System.IO.File.Exists(strPhysicalPath) Then

Exit Sub
End If
objFileInfo = New System.IO.FileInfo(strPhysicalPath)
Response.Clear()

64

Chapter 2

05_749516 ch02.qxp 2/10/06 9:11 PM Page 64

‘Add Headers to enable dialog display
Response.AddHeader(“Content-Disposition”, _

“attachment; filename=” & objFileInfo.Name)
Response.AddHeader(“Content-Length”, objFileInfo.Length.ToString())
Response.ContentType = “application/octet-stream”
Response.WriteFile(objFileInfo.FullName)

Catch ex As Exception
‘By calling the “Throw” statement, you are raising the error to
‘the global.asax file, which will use the default error handling
‘page to process/display the custom error to the user
Throw

Finally
Response.End()

End Try
End Sub

This excerpt provides a file in the form of an Open or Save dialog box, as noted in the previous section,
“Using the Wrox File Share.”

The Download page is extensible in that the application could be easily modified so that another page
would be loaded first, with a link to the download.aspx page, passing in a resourceID querystring
variable. As such, the file could be re-downloaded or downloaded in a safer fashion, using a clickable
button or button-link to initiate the request. This is more commonly used across the board, because
many download pages are riddled with advertisements and problematic page elements that seem to be
the cause for failed download attempts.

User Controls
Some specific user controls in the site assist with the navigation and content display for multiple pages.
Because web user controls promote a practice of creating and using reusable code, they were made to be
applicable within multiple pages of the site, depending on the nature of the controls.

header.ascx
The header user control is used to provide the top area of each page with meaningful content. If any-
thing needs to reside at or near the top of a web page, you would want to add it to the header control so
it will be visible through all of the pages.

The following code represents entire header.ascx source:

<%@ Control Language=”VB” AutoEventWireup=”false” CodeFile=”header.ascx.vb”
Inherits=”Controls_header” %>
<div style=”text-align: center”>

<table><tr>

Instead of a typical web page displaying advertisements, the Wrox File Share provides
a directly streamed file to HTTP caller from the click of a hyperlink. The response of
the page is cleared, headers are added to it, and the file object is written to it before it
is returned to the caller. This allows the page to return a file, a fast and clean approach
to downloading the file.

65

Wrox File Share

05_749516 ch02.qxp 2/10/06 9:11 PM Page 65

<td></td>
<td><h1><% Response.Write(Page.Title) %></h1>
</td>

</tr></table>
</div>

Notice that the <%Response.Write(Page.Title)%> tags are used to write back to the response stream
a title of the web site on the top of each page, which originated from the Web.config file.

footer.ascx
The footer user control is used as the bottom section of the site, for each page that uses the master
page. That is, the footer control, among others, is a referenced control within the master page. In this
way, it is propagated to all pages in the same exact manner.

The content of the footer control is displayed here:

<%@ Control Language=”VB” AutoEventWireup=”false” CodeFile=”footer.ascx.vb”
Inherits=”Controls_footer” %>
© 2005 Wrox Press
<asp:LoginStatus ID=”LoginStatus1” runat=”server”
LogoutAction=”RedirectToLoginPage”

LogoutPageUrl=”~/Login.aspx” />

This excerpt includes a reference to a LoginStatus control, brand new in the ASP.NET 2.0 controlset.
The new control displays a changing link-button for providing log-in and log-out functionality. When
users are logged in to the site, the LoginStatus control displays a Logout link-button. Clicking the
Logout link-button logs users out of the site, and directs them to the Login page. When users are logged
out of the site, the LoginStatus control displays a Login link-button. Clicking the Login link-button
directs them to the Login page, where they are able to log in.

navigation.ascx
The navigation user control is used to provide the reusable menu on each page of the site. The Menu
control itself is a brand new ASP.NET 2.0 control that binds to a SiteMapDataSource control, also new
in version 2.0 of the .NET Framework. The SiteMapDataSource control is used to bind to an XML file,
wherein the site files are listed as entries in the XML file.

The following excerpt is the HTML markup of the navigation control:

<%@ Control Language=”VB” AutoEventWireup=”false” CodeFile=”navigation.ascx.vb”
Inherits=”Controls_navigation” %>
<asp:Menu ID=”Menu1” runat=”server” DataSourceID=”SiteMapDataSource1”
Orientation=”Horizontal”

StaticDisplayLevels=”2”></asp:Menu>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” runat=”server” />

The XML file of the SiteMapDataSource control is displayed here:

<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >
<siteMapNode url=”ContentFiles/default.aspx” title=”Home”>

66

Chapter 2

05_749516 ch02.qxp 2/10/06 9:11 PM Page 66

<siteMapNode url=”ContentFiles/about.aspx” title=”About” />
<siteMapNode url=”ContentFiles/contact.aspx” title=”Contact Us” />
<siteMapNode url=”Management/ManageEmail.aspx” title=”Admin” />

</siteMapNode>
</siteMap>

To add a page to the menu of the web site, you must simply copy and paste (with the necessary modifi-
cations) an entry of the Web.sitemap file. In this way, the master page (which contains the only reference
to the navigation control) provides visibility to the menu of the site on each page.

The next section explains in detail how to install and configure the source files of the web site and how
to deploy the site to a server in a production environment.

Setting up the Project
The time has come to learn how to install this Wrox File Share and see for yourself how quickly you can
be up and running with a working resource application. You can install the web site either as a hosted
web site application or as a source codebase for editing in Visual Studio 2005 or VWD.

Because the application involves sending e-mails, the configuration of a usable e-mail account is impera-
tive for the project to run properly. Many mail providers do not openly provide SMTP relay to their user
accounts, and some careful use of the mail server security protocols may be necessary. This sample
application assumes you have access to a mail server with relay permissions granted for a valid user
account.

Hosted Web Site Installation
This section assumes that the .NET Framework 2.0 is already installed. If you want to install the Wrox
File Share as a hosted web site on a computer or server, without customizations or enhancements at all,
follow these steps:

1. Open the folder Chapter 02 – Wrox File Share\Installation Files\ from the CD-ROM that came
with this book and double-click the setup.exe file.

2. This process installs the files properly for hosting the web site locally to
C:\wwwRoot\FileShare as a file-based web site application. Click Next to install the applica-
tion, and close the installation program when it completes.

3. Browse to your local web site (for example, http://localhost/FileShare). The Wrox File
Share application should appear. To test the Administration section, click the Admin link and
log in with a username of Admin and a password of password#.

4. Finally, if you need to expose the site to the outside world, be sure to configure the public IP
address to the IIS web site application. The details of this IIS configuration and its implications
are outside the scope of this book, but the Wrox File Share is easily configurable as a public web
site with a brief tutorial on web site hosting.

67

Wrox File Share

05_749516 ch02.qxp 2/10/06 9:11 PM Page 67

Local Developer Installation
This section assumes that the .NET Framework 2.0 is already installed, along with either Visual Studio
2005 or VWD. If you would like to open the project in Visual Studio or VWD, perform the following steps:

1. Create a new web site in Visual Web Developer or Visual Studio 2005.

2. Open the folder Chapter 02 – Wrox File Share Installer\ from the CD-ROM that came with this
book and extract the contents of the file FileShareSource.zip to a folder on your hard drive.

3. Open a Windows Explorer and browse to the folder that contains the unpacked files. Next,
arrange both Visual Web Developer and the Windows Explorer in such a way that both are visi-
ble at the same time.

4. In the Windows Explorer, select all the folders and files within the codebase and drag them from
the explorer window into VWD’s Solution Explorer. If you’re prompted to overwrite files, select
Yes. You should end up with a Solution Explorer that contains all of the necessary files for the
project to run properly.

5. In the appSettings section of the Web.config file, modify the various mail server settings’ val-
ues to reflect the SMTP relay e-mail account information to be used for sending e-mails. Also,
the PageTitle property is changeable here, which applies to the window title bar of each page
in the site:

<appSettings>
<add key=”EmailFrom” value=”admin@wroxfileshare.com”/>

<add key=”EmailSubject” value=”File Ready for Download!”/>
<add key=”SmtpServer” value=”127.0.0.1”/>
<add key=”MailUser” value=”myalias”/>
<add key=”MailPassword” value=”mypassword”/>
<add key=”MailPort” value=”25”/>
<add key=”EmailFormatSelected” value=”Text”/>
<add key=”PageTitle” value=”Wrox File Sharing Website”/>
<add key=”ShareLocalFolderPath” value=

“C:\inetpub\wwwroot\FileShare\FileStorage\”/>
<add key=”httpDownloadPath” value=”http://localhost/FileShare/”/>
<!--
<add key=”CurrentTheme” value=”CleanBlue” />
-->
<add key=”CurrentTheme” value=”CleanRed”/>

</appSettings>

6. Press F5 to run the application in the development environment. The most engaging portion of
effort in this process will probably be the use and configuration of the mail server account
within the Web.config file.

For some insight on how you can modify your project in order to take advantage of some of the possible
uses of the Wrox File Share, head to www.wrox.com and find this book’s download page.

68

Chapter 2

05_749516 ch02.qxp 2/10/06 9:11 PM Page 68

Summary
This chapter reviewed some of new controls within the ASP.NET 2.0 Framework, such as the Login,
LoginStatus, PasswordRecovery, SiteMap, SiteMapDataSource, master pages, and Menu controls.
The flow of the chapter was centered around a simple application design, using business layer classes,
data layer classes, and a basic database structure. You learned how each of these new controls can save
development time and effort in great proportions.

The Wrox File Share design provided a glimpse at the class files in use, their properties, their methods,
and the general purposes of each. It also gave visibility to the stored procedures, table designs, relation-
ships, and generalized data entities.

The chapter finished by showing you how to extract and customize the Wrox File Share in a develop-
ment environment, and how to install it to production.

69

Wrox File Share

05_749516 ch02.qxp 2/10/06 9:11 PM Page 69

05_749516 ch02.qxp 2/10/06 9:11 PM Page 70

3
Wrox Chat Server

A web-based chat application can be a very useful component to your online presence. It is a great
way for customers and support representatives to communicate and achieve instantaneous results.
Questions can be answered within seconds, whereas e-mail and phone calls have delays that seem
to drag the online experience to a grueling halt. Customers can simply type their question along
with their order number into the browser window and receive the status of their order almost
instantly from the customer support representative on the other side of the world. In other cases,
chat applications allow companies to provide cost-effective support regardless of the language
barriers that may normally exist between the two people communicating. Certainly, chat applica-
tions have had a tremendous impact on the way information is exchanged over the Web. For these
reasons and more, many businesses add chat pages to their sites so they can provide instant access
to their helpful customer support services. But this simple web site addition can end up becoming
a larger effort than it initially appears. What’s the big deal, you ask? It’s just a little chat page! How
hard can it be? Well, numerous ways exist to implement a chat application for an organization,
and tons of implications may follow. For example, a chat application could require customizations,
such as the following:

❑ The capability to store chat messages within a database for reporting purposes.

❑ A provision to logically group the chat rooms for special needs that web users may find
helpful.

❑ A way to identify common chat words and phrases that users are chatting about, which
may lead to finding commonalities in the user community that provide insight to their
interest or concerns.

❑ A way to change the server name and settings of the chat system, allowing for mainte-
nance to server configurations or infrastructure.

❑ A means by which to share chat messages coming in to the web site among many cus-
tomer support personnel.

❑ Automated chat responses for commonly asked questions. These may include detecting
a series of words or phrases that combine to form phrases that can be catalogued, and
responses can be sent back in a form of artificial dialogue that might help people find
what they are looking for.

06_749516 ch03.qxp 2/10/06 9:12 PM Page 71

Considering the possibilities, you must take a broad approach to implementing a chat section of a web
site for any sort of successful online presence. The basic technology infrastructure needs to focus on the
chat mechanisms specifically, because they are the crux of the application and seem to be the differentia-
tor between applications on the market. That is, some chat applications are slower than others, and some
are limited to being executed at the desktop level.

The time and energy it takes to create such an application, and the reusable nature of the application
itself, make it a perfect candidate to include in this Instant Results book, which provides the basic foun-
dational templates for implementing similar solutions on your own.

The essential features of the Wrox Chat Server include the following:

❑ The capability to enter only your e-mail address and be able to start chatting immediately, with-
out waiting for any sort of applet or heavy application to load.

❑ The display of each chat room is grouped by category, allowing for an organized approach to
the available chat categories within your application.

❑ The display of each chat room is accompanied by a number of current chat room members,
allowing web browsers to see which chat rooms are currently being accessed.

❑ The use of asynchronous callbacks, a new feature in ASP.NET 2.0, which allow for easy imple-
mentation of Ajax methods and technologies (providing behind-the-scenes xmlHttp posts with
JavaScript and responding to the posts via events on the server, all without refreshing the page).

❑ The capability to specify the number of hours for which each chat session maintains its messages
on the server.

❑ The capability to change the look and feel the entire web site by simply modifying one entry in
a configuration file.

These features comprise the bulk of this Wrox Chat Server application — it is fairly straightforward in
its use of generalized chat application concepts, but actually implements some very exciting and compli-
cated technologies. So get ready to learn about a few of the greatest web-based features with the all-new
ASP.NET 2.0 release!

This chapter analyzes the various components that make up the web site, including the specific controls
that ship with the ASP.NET 2.0 development environments. These controls include the following:

❑ Menu control

❑ SiteMapDataSource control

❑ Themes

❑ Master Pages

❑ Callbacks

The section, “Wrox Chat Server Design,” digs into the physical design of the project in great detail. This
includes the core pieces of technology and outlines the file structure of the site. It also looks at the vari-
ous classes involved, the members of each class, and walks you through the database tables and their
relationships.

72

Chapter 3

06_749516 ch03.qxp 2/10/06 9:12 PM Page 72

The section titled “Code and Code Explanation” focuses on the design of each class, exposing their
methods and properties.

The final section, “Setting up the Project,” reviews how to load up the Wrox Chat Server in a develop-
ment environment, and how to customize it to meet your needs.

Using the Wrox Chat Server
Using the Wrox Chat Server is completely intuitive. The application has been designed to be the most
simplistic approach possible to conducting a chat over the Internet. All you need to do is wrapped up in
three simple steps:

1. Enter your e-mail address and click Continue.

2. Select a chat room.

3. Type a message in the chat window and press Enter to send.

So, cut the chatter and get to business! If you have installed the chat source code to your local machine,
(refer to the section “Setting up the Project” later in this chapter), you can browse to view the site by
going to http://localhost/ChatServer. The screen shown in Figure 3-1 appears.

Figure 3-1

73

Wrox Chat Server

06_749516 ch03.qxp 2/10/06 9:12 PM Page 73

At the top of the menu are three links to choose from:

❑ Home

❑ About

❑ Contact Us

On the homepage, you will see a text box used to capture your e-mail address. Once you enter your
e-mail address here, click Continue to proceed. This simply opens up a session variable for your e-mail
address, and uses it for the extent of your session within the site. The next screen you are brought to is
the chat room selection page (see Figure 3-2), where you will see a list of all the chat rooms available,
separated by categories.

Figure 3-2

From the interface in Figure 3-2, you can select the chat room by simply clicking its name. You are then
brought to the actual chat room, like the one in Figure 3-3, where you are able to enter any text you like
into the window.

Figure 3-3 displays the basic chat room interface, with the title of VB.Net Data Binding. It is here that the
actual chat interactions will take place.

This chapter covers the essential areas of the development that comprise the application. It walks you
through the core class files in detail, outlining their behavior. In addition, you also gain insight into the
database, data model, and database objects.

74

Chapter 3

06_749516 ch03.qxp 2/10/06 9:12 PM Page 74

Figure 3-3

The next section addresses the physical design of the application, covering the client, business, and data
layers.

Wrox Chat Server Design
In this section you explore the entire design of the Wrox Chat Server, learning how to initiate callbacks,
discerning the site’s structure and data model, understanding the themes and skins employed, and
finally, absorbing all the classes involved.

Sending Messages Using Callbacks
Callbacks are brand new to the .NET Framework 2.0. They basically allow local browser scripts to make
asynchronous calls to remote servers without the need to refresh the page. This technology provides a
highly responsive user interface over the Internet, and has been much-needed for many years. Raw data
can be sent and received in separate memory spaces without ever refreshing the user’s browser window.
This concept is similar to recent technologies that have been masterfully implemented in various online
solutions using technologies such as Ajax or Remote Scripting. Although these methods and techniques
provide dramatically greater levels of performance within most web interfaces, the actual code to imple-
ment such solutions is slightly complicated in nature. Callbacks provide an alternative to the complex
implementations of hand-written JavaScript and xmlHTTP post logic.

75

Wrox Chat Server

06_749516 ch03.qxp 2/10/06 9:12 PM Page 75

The flow of events when executing a callback is outlined here:

1. The GetCallbackEventReference method obtains the name of your client-side JavaScript
function that is identified as the initiator of the callback. This occurs because your page imple-
mented the ICallbackEventHandler interface. By implementing the interface, the webform
automatically adds client-side JavaScript functions for you.

2. The JavaScript that was intrinsically registered at the client contains an extra layer, called the
Callback Manager, which is a set of JavaScripts used to launch and receive xmlHTTP posts between
the browser and the web server. This Callback Manager intercepts the request that is to be sent
to the server as a callback, and creates the actual request mechanism itself as a value-added fea-
ture. The Callback Manager sends off the asynchronous xmlHTTP post to the server at this point.

3. Once the Callback Manager has sent the post off to the server, the server receives the request
and invokes the ICallbackEventHandler.RaiseCallbackEvent() method, which is where
your custom logic can reside, before the server processes the call and returns any sort of response
to the caller. Arguments can be accepted in this event as parameters, often used to look up data
from a database or process information.

4. The server returns the call over the Internet to the Callback Manager, notifying the client that
the request has been received and sent back. String values can be sent back as return values of
the call, which are then handed off to the original caller in step 5.

5. Finally, the Callback Manager notifies the JavaScript calling method that the callback has been
completed, and passes back any string values the server may have provided. This allows for
additional local client-side scripting such as the updating of the user interface.

You must take several required actions in order to use callbacks within ASP.NET 2.0 pages:

❑ Implement the ICallbackEventHandler interface.

❑ Create custom JavaScript methods.

❑ Provide logic in two server-side events.

❑ Register a specific client-side script.

The detailed steps needed to actually create a callback in a new web application are as follows.

1. To create a callback from a WebForm, you first need to decide on the WebForm you want to use.
As a reference for troubleshooting, the ChatWindow.aspx page in the ContentFiles folder is where
the sample project implements the callback methods. Start by opening the code-behind file you
want to process callbacks from, and implement the System.Web.UI.ICallbackEventHandler
interface:

Implements System.Web.UI.ICallbackEventHandler

2. This automatically creates an event handler called RaiseCallbackEvent() and a method
called GetCallbackResult().

❑ The actual code generated for these two items is as follows:

Public Sub RaiseCallbackEvent(ByVal eventArgument As String) Implements _
System.Web.UI.ICallbackEventHandler.RaiseCallbackEvent

76

Chapter 3

06_749516 ch03.qxp 2/10/06 9:12 PM Page 76

End Sub

Public Function GetCallbackResult() As String Implements _
System.Web.UI.ICallbackEventHandler.GetCallbackResult
End Function

❑ The RaiseCallbackEvent() accepts the call from the client, allowing the server to
process business logic as needed, and the GetCallbackResult() function sends a
response back to the client, allowing the client to display the update in the browser via
JavaScript (keep reading, it will make sense in a moment).

3. Next, provide the client-side script, which provides the Callback Manager script’s entry point
and exit point as embedded JavaScript functions on the client side. This script’s functions are
named CallServer and ReceiveServerData:

Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
Dim cm As ClientScriptManager = Page.ClientScript
Dim cbReference As String
cbReference = cm.GetCallbackEventReference(Me, “arg”, _

“ReceiveServerData”, “”)
Dim callbackScript As String = “”
callbackScript &= “function CallServer(arg, context)” & _

“{“ & cbReference & “; }”
cm.RegisterClientScriptBlock(Me.GetType(), “CallServer”, _

callbackScript, True)
End Sub

4. Add a standard HTML text box to the HTML markup on the form. This will be named
txtMessage. This provides the mechanism of input from the user to the server:

<input id=”txtMessage” style=”width: 218px; height: 55px” type=”text” />

5. Then, with the following code, add a browser-side button that contains a special onclick event
call to the Callback Manager entry point (for which you embedded the name of CallServer in
step 3). This onclick event accepts an argument of the txtMessage control’s text value. This
is how the local client-side scripting captures the user input and sends it off to the server:

<input type=”button” value=”Send”
onclick=”CallServer(document.getElementById(‘txtMessage’).value, null)”
style=”width: 57px; height: 60px” id=”Button1”/>

6. Add a JavaScript routine called ReceiveServerData() to the HTML markup on the form.
This routine accepts the arguments of arg and context. Don’t worry about context, but arg
provides the response of data back from the server, once it is done processing the call. This is the
actual implementation of the Callback Manager’s exit point. Any code can go here, but it is the
Wrox Chat Server’s primary way of updating the user as the result of the behind-the-scenes
callback event. In this case, an HTML element’s contents are updated with a string value from
the server:

<script type=”text/javascript”>
function ReceiveServerData(arg, context)
{

//send txt to a different html control, or process the info via javascript...
var obj = document.getElementById(“MyOtherHTMLcontrol”);

77

Wrox Chat Server

06_749516 ch03.qxp 2/10/06 9:12 PM Page 77

obj.innerHTML += arg;
}
</script>

Now you have a working callback routine. The client has the necessary JavaScript routines, and the
server provides the necessary references to the Callback Manager classes and events. Not bad for 10
minutes of work and a little bit of elbow grease!

Structure of the Site
The sections of the web site project are listed in the following table:

Section Description

App_Code The folder that houses the business layer class (chatroom.vb) and
the data layer class (chatroomDB.vb).

App_Data The standard .NET folder for database files.

App_Themes The themes folder, containing two themes for use with the site.

ContentFiles The standard ASPX WebForm files for displaying content.

Controls Stores all user controls.

Images Stores images for the header or any other pages.

[miscellaneous files] These include the Web.config file, sitemap file, and Master Page
file at the root of the site.

Data Model
The data model is very simple in nature; it needs to store only four basic data elements:

❑ Chat Room Categories

❑ Chat Rooms

❑ Messages

❑ Users

Each chat room is classified under a single chat room category. There is no limit to the number of chat
rooms and categories you can create, although it must be done manually at the database level for now.
Each message is posted under exactly one chat room and is tracked by the user ID who sent it. All mes-
sages for all chat rooms are stored on the server, but only the chat messages for the last hour are sent
back to the users. You can change the number of hours to keep messages active in the Web.config file of
the site.

The diagram of the database tables involved is displayed in Figure 3-4.

A detailed view of each of the four tables is given in the following sections.

78

Chapter 3

06_749516 ch03.qxp 2/10/06 9:12 PM Page 78

Figure 3-4

The Category Table
The Category table stores all of the categories to which each chat room is assigned. It contains three
fields, defined as follows:

Field Name Data Type Description

ID Int The unique identifier for this record.

Name varchar(MAX) The name of the category that the user sees when viewing
all of the chat rooms by category in the tree view of the
homepage.

Description varchar(MAX) The textual description of the category, which can be dis-
played at will within the application.

The next table houses the data for the chat rooms themselves.

The Room Table
The Room table is essentially a basic entity containing what you would need to describe a chat room;
that is, the category of the room, a name for the room, and a textual description.

Field Name Data Type Description

ID Int The unique identifier for this record.

CategoryID Int The foreign key that identifies under which category this
chat room is classified.

Name varchar(MAX) The name of the chat room.

Description varchar(MAX) The textual description of the chat room, which can be
displayed at will within the application.

79

Wrox Chat Server

06_749516 ch03.qxp 2/10/06 9:12 PM Page 79

Now that you have an idea of where the categories and chat rooms fit into the data model, you will be
able to understand where and how the actual messages are stored and used within the same model.

The Message Table
The Message table contains the text messages for each and every chat room by all of the users. Although
all of the visible messages provided to the chat users are filtered to show only the messages sent within a
certain number of hours, all of the messages are maintained here until a database administrator deter-
mines it is time to delete or archive the data. Following are the columns for this Message table, and their
respective type and description information:

Field Name Data Type Description

ID Int The unique identifier for this record.

RoomID Int The foreign key that identifies to which chat room this
message is posted.

UserID Int The foreign key that identifies which user posted this
message.

Text varchar(MAX) The actual chatted message text.

Timestamp Datetime The automatically generated date and time of the message
as it was entered into the database.

The messages have a foreign key of the UserID, which is a reference to the User table, explained next.

The User Table
The User table provides specific information about the chat users, allowing their presence and usage to
be customized, secured, tracked, and reported on. The following is a depiction of the columns within the
User table:

Field Name Data Type Description

ID Int The unique identifier for this record.

Email varchar(MAX) The e-mail address of the user.

The data model seems to meet the essential element needs, and provides a level of simplistic design you
would hope for.

Next, you dive into the visual customization techniques with the use of themes and skins.

Themes and Skins
The project provides a simple way to apply themes and skins to each page of the site, without modifying
any HTML markup sections on any page (even the master page is safe from special control-based HTML
markup). You can apply a theme to the entire web site by modifying the Web.config file to point to the
name of your theme (assuming the theme exists in your project under the App_Themes folder). This is

80

Chapter 3

06_749516 ch03.qxp 2/10/06 9:12 PM Page 80

carried out within each ASP.NET form by using the following code in each of the form’s pre-initialization
events:

‘’’ <summary>
‘’’ this preinit event fires to initialize the page. It allows for the
‘’’ theme and title to be set for this page, which actually pulls from
‘’’ the web.config setting via the shared Config class’s exposed properties.
‘’’ </summary>
Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.PreInit
Page.Theme = Config.CurrentTheme
Page.Title = Config.PageTitle

End Sub

This basically accesses the config class’s properties (pulled from the Web.config file), and sets the page’s
theme member to be the current theme value. In this way, you can maintain a consistent experience
throughout the web site, with only one change needed to Web.config in order to change the look and feel
of the entire user experience! You are probably glad to hear that — I know I am. The exact place where you
would change the theme for the site is in the appSettings section of Web.config, as displayed here:

<!--
<add key=”CurrentTheme” value=”CleanBlue” />

-->
<add key=”CurrentTheme” value=”CleanRed” />

This code displays one of the theme entries as commented out, and one of them as active. Simply swap
the two values in order to make the change.

Classes Involved
The Wrox Chat Server contains some essential classes that represent the business and data layers of the
application. In these basic class structures, you will find methods and properties that provide the bulk of
the features in the application.

The ChatRoom Class
The ChatRoom class (see Figure 3-5) is essentially the class that allows for the actual saving and retriev-
ing of the chat room’s textual messages to and from the database. The ChatRoom class is used to perform
the bulk of the object and contextual user interface provisioning as a business layer for the application.
Its methods are accessible as public and shared for ease of use within the various forms and controls
of the application. This means that you do not have to instantiate an instance of the resource class in
order to call its methods. Instead, simply use the syntax of ChatRoom.MethodName() in any VB.NET
WebForm or control of the application to execute the function.

The ChatRoom class’s methods are detailed in the following table:

Method Return Type Description

SaveMessage() n/a Saves the chat message, passing it off to the
ChatRoomDB class.

Table continued on following page

81

Wrox Chat Server

06_749516 ch03.qxp 2/10/06 9:12 PM Page 81

Method Return Type Description

GetMessagesForChatRoom() String Retrieves the chat room’s HTML string from
the database, via the ChatRoomDB class.

GetChatRoomList() String Retrieves an HTML string listing of
chat rooms, grouped by category as an
HTML string from the database, via the
ChatRoomDB class.

Figure 3-5

This ChatRoom class acts as the business layer, providing an interface to the data access layer, the
ChatRoomDB class.

The ChatRoomDB Class
The ChatRoomDB class (see Figure 3-6) acts as a data layer for the application, because it is the sole entity
responsible for selecting data from or inserting data into the database. This is a typical way of consoli-
dating commonly used data execution logic into a single managed class.

Figure 3-6

82

Chapter 3

06_749516 ch03.qxp 2/10/06 9:12 PM Page 82

The following table displays the accessible members of the ChatRoomDB class:

Method Return Type Description

SaveMessage() n/a Saves the chat message into the database.

GetMessagesForChatRoom() String Retrieves the chat room’s HTML string of
messages out of the database.

GetChatRoomList() String Retrieves an HTML string listing of chat
rooms, grouped by category as an HTML
string from the database.

This wraps up the essential classes of the application. The next class stores references to the configura-
tion variables of the application, which are stored in the Web.config file.

The Config Class
The Config class, depicted in Figure 3-7, is used as the configuration manager of the application. It is
essentially the main access point for all configuration settings that any of the application tiers may
require access to.

Figure 3-7

The following table displays the accessible members of the Config class:

Property Return Type Description

ConnectionString() String The connection string property that pulls
from Web.config.

CurrentTheme() String The current theme of the web site as
defined in the Web.config file.

PageTitle() String The HTML title value that each page
displays, as defined here from the
Web.config file.

HoursToShow() Integer The number of hours for the recent chat
room messages to keep showing.

Now you have seen the classes involved and their applicable method calls. The next section walks you
through each of the code sections of interest.

83

Wrox Chat Server

06_749516 ch03.qxp 2/10/06 9:12 PM Page 83

Code and Code Explanation
This section explains each of the essential code files in the Wrox Chat Server project. It looks in detail at the
files in the each of the different folders and explains how they interact and are used across the project.

Root Files
The root of the Wrox Chat Server contains several important files, including the main ASPX shell-pages,
and the configuration and formatting pages.

Web.config
The Web.config stores vital configuration entries used within the application. One entry, named the
SqlServerConnectionString, controls the connection to the SQL Server 2005 Express database file
ChatServerDB.mdf, as seen here:

<connectionStrings>
<add name=”ConnectionString”

connectionString=”Data Source=(local)\SqlExpress;AttachDbFilename=
|DataDirectory|\ChatServerDB.mdf;Integrated Security=True;User Instance=True”
providerName=”System.Data.SqlClient”/>
</connectionStrings>

It also contains the other entries for showing chat messages, the page title, and the currently used theme,
as displayed here:

<appSettings>
<add key=”HoursToShow” value=”1”/>
<add key=”PageTitle” value=”Wrox Chat Server”/>
<!--
<add key=”CurrentTheme” value=”CleanBlue” />
-->
<add key=”CurrentTheme” value=”CleanRed”/>

</appSettings>

This is where the easy modification can take place for changing which theme is used for each page of the
site. You can find more information on this in the “Themes and Skins” section earlier in the chapter.

Config.vb
The Config class is used as an available business object for values and settings through visibility of
some static members. Its members are listed as properties in order to abstract the location in which these
values are stored. All of the values for the properties are stored in the Web.config file, with this Config
class retrieving them when they are needed:

Imports Microsoft.VisualBasic

Public Class Config
‘’’ <summary>
‘’’ The connection string property that pulls from the web.config
‘’’ </summary>
Public Shared ReadOnly Property ConnectionString() As String

Get

84

Chapter 3

06_749516 ch03.qxp 2/10/06 9:12 PM Page 84

Return ConfigurationManager.ConnectionStrings(_
“ConnectionString”).ConnectionString

End Get
End Property
‘’’ <summary>
‘’’ The current theme of the website as defined in the web.config
‘’’ </summary>
Public Shared ReadOnly Property CurrentTheme() As String

Get
Return ConfigurationManager.AppSettings(“CurrentTheme”).ToString()

End Get
End Property
‘’’ <summary>
‘’’ The HTML title value that each page displays, as defined
‘’’ here from the web.config file
‘’’ </summary>
Public Shared ReadOnly Property PageTitle() As String

Get
Return ConfigurationManager.AppSettings(“PageTitle”).ToString()

End Get
End Property

‘’’ <summary>
‘’’ The number of hours back in time from the current time
‘’’ that each chat room displays, as defined here from the
‘’’ web.config file
‘’’ </summary>
Public Shared ReadOnly Property HoursToShow() As String

Get
Return ConfigurationManager.AppSettings(“HoursToShow”).ToString()

End Get
End Property
End Class

As the Config class displays, the properties are marked as Public Shared ReadOnly, which allows
them to be accessed from anywhere in the project by the config-dot notation. An example of this would
be config.ConnectionString(). This would return the connection string from the Config class, with-
out instantiating a Config class object first.

ChatRoom.vb
The ChatRoom class is used to retrieve and save the chat messages being passed between the web site
and the client browsers. The class acts as a business layer and provides a level of abstraction between the
requests for database records and the user interface.

One of the more important method calls of the resource is the SaveResource method. The code for this
is as follows:

‘’’ <summary>
‘’’ Saves a Message to the ChatRoom in the database
‘’’ </summary>
Public Shared Function SaveMessage(ByVal ChatRoomID As Integer, _

ByVal Text As String, ByVal Email As String) As Boolean
Return ChatRoomDB.SaveMessage(ChatRoomID, Text, Email)

End Function

85

Wrox Chat Server

06_749516 ch03.qxp 2/10/06 9:12 PM Page 85

It accepts the following three parameters:

❑ ChatRoomID

❑ Text

❑ Email

These represent the necessary pieces of information to save the message into the database. The
SaveResource method provides the means by which to hand off a Resource class object to the data
tier for processing. Thus, the ChatRoomDB.SaveMessage call is made to pass on the heavy lifting to
the data layer (the ChatRoomDB class).

ChatRoomDB.vb
The ChatRoomDB class is essentially the data layer for the application. It provides method calls to retrieve
information from the database and insert or update data within the database. This class serves as the
only file or object that will have access to the database files. In so doing, you can isolate data-specific
operations outside of the business logic layer. This technique protects a developer from writing dupli-
cate data access code and helps to maintain organized and structured data access logic. This also sup-
ports the application from being logically separated into tiers, or layers, with the deliberate feasibility
of migrating and expanding the application onto separate servers at any point in time.

The ChatRoomDB class contains a SaveMessage() method, as displayed here:

‘’’ <summary>
‘’’ Saves a Message to the ChatRoom in the database
‘’’ </summary>
Public Shared Function SaveMessage(ByVal ChatRoomID As Integer, _

ByVal Text As String, ByVal Email As String) As Boolean

Using mConnection As New SqlConnection(Config.ConnectionString)
‘Create a command object
Dim mCommand As SqlCommand = New SqlCommand(_

“sprocMessageInsertUpdateItem”, mConnection)
‘set it to the type of ‘stored procedure’
mCommand.CommandType = CommandType.StoredProcedure
‘parameters: the ChatRoomID, the Message text, and the UserID
mCommand.Parameters.AddWithValue(“@roomID”, ChatRoomID)
mCommand.Parameters.AddWithValue(“@Email”, Email)
mCommand.Parameters.AddWithValue(“@text”, Text)
‘open the connection and execute the stored procedure
mConnection.Open()
Dim result As Integer = mCommand.ExecuteNonQuery()
‘close the connection and dispose of the command
mConnection.Close()
mCommand.Dispose()
Return True

End Using
End Function

Another method of interest is the GetChatRoomList() method, returning a DataSet containing the chat
rooms entered into the database, along with their assigned categories.

86

Chapter 3

06_749516 ch03.qxp 2/10/06 9:12 PM Page 86

The following is a copy of the entire contents of the GetChatRoomList() method:

‘’’ <summary>
‘’’ Retrieves a DataSet of ChatRooms from the database
‘’’ </summary>
Public Shared Function GetChatRoomList() As DataSet

Dim dsChatRooms As DataSet = New DataSet()
Try

Using mConnection As New SqlConnection(Config.ConnectionString)

Dim mCommand As SqlCommand = New SqlCommand(_
“sprocChatRoomSelectList”, mConnection)

mCommand.CommandType = CommandType.StoredProcedure
Dim myDataAdapter As SqlDataAdapter = New SqlDataAdapter()
myDataAdapter.SelectCommand = mCommand
myDataAdapter.Fill(dsChatRooms)
mConnection.Close()
Return dsChatRooms

End Using
Catch ex As Exception

‘When we call the “Throw” statement, we are raising the error
‘to the global.asax file, which will use the default error
‘handling page to process/display the custom error to the user
Throw

End Try
End Function

The preceding logic performs the following steps:

1. Creates a new SqlCommand object, passing in the stored procedure name and the connection:

Using mConnection As New SqlConnection(Config.ConnectionString)

2. Sets the CommandType to be StoredProcedure, and provides the name of
sprocChatRoomSelectList:

Dim mCommand As SqlCommand = New SqlCommand(_
“sprocChatRoomSelectList”, mConnection)

mCommand.CommandType = CommandType.StoredProcedure

3. Creates a new DataAdapter, and assigns its SelectCommand property to the mCommand
ADO.NET command object reference. The DataAdapter calls the Fill method, which assigns
the data to the passed-in dsChatRooms DataSet variable:

Dim myDataAdapter As SqlDataAdapter = New SqlDataAdapter()
myDataAdapter.SelectCommand = mCommand
myDataAdapter.Fill(dsChatRooms)

4. Closes the connection, and returns the DataSet to the calling function:

mConnection.Close()
Return dsChatRooms

Now that you have had a glimpse at how the business and data layers are structured, the next section
looks at the client layer (WebForms), and what the real deal is with callbacks in the graphical user inter-
face execution logic.

87

Wrox Chat Server

06_749516 ch03.qxp 2/10/06 9:12 PM Page 87

WebForms
WebForms are standard ASPX pages that contain the client-side and very visible portion of the application.
A few WebForms are of particular importance within the project, as noted in the subsequent sections.

SignIn.aspx
The SignIn.aspx file is the first page that loads when the site is accessed. Within this page is the TextBox
control used to capture the e-mail address of the user before he or she continues any further in the appli-
cation. The e-mail address is needed to reference the person who sent the chat messages to the server,
assigning a UserID to the e-mail address upon the user’s first message to any of the chat rooms.

Several specific functions from this page are important to mention. The first one is a common event
with logic that is somewhat redundant throughout the application’s ASPX pages. This is the page pre-
initialization event, as shown here:

‘’’ <summary>
‘’’ this preinit event fires to initialize the page. It allows
‘’’ for the theme and title to be set for this page, which
‘’’ actually pulls from the web.config setting via the shared
‘’’ Config class’s exposed properties.
‘’’ </summary>
Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.PreInit
Page.Theme = Config.CurrentTheme
Page.Title = Config.PageTitle

End Sub

The Page.Theme is the theme property of the Page reference. By setting this Theme property to the
Config class’s exposed CurrentTheme value, you are assigning a theme at run time. This model of
assignment is ideal, because each page can dynamically utilize the theme that is controlled via the
Web.config file without requiring any other file changes.

Default.aspx
The obvious area of special interest is the page’s instance of the TreeView control. The control, new in
the ASP.NET 2.0 control library, has been completely rewritten from the ground up for the 2.0 version,
and boy does it show! It is especially easy to use and very intuitive. Although you can bind a TreeView
control to a SiteMapDataSource control and an XmlDataSource control, this instance of the TreeView
control does not do either. Instead, it is dynamically loaded on the first loading of the page, from the
DataSet returned by the business layer.

The following steps include references to code found within the Default.aspx.vb code-behind file, and
walk you through the loading of the TreeView control’s nodes and subnodes with the appropriate cate-
gory data and chat room data:

1. First, iterate through the chat room DataSet’s rows using the For-Next syntax:

For Each drChatRoom In dtChatRoom.Rows

2. Next, set the variables:

88

Chapter 3

06_749516 ch03.qxp 2/10/06 9:12 PM Page 88

Dim CategoryId As Integer = _
dtChatRoom.Rows(currentRow).Item(“CatID”).ToString()

Dim CategoryName As String = _
dtChatRoom.Rows(currentRow).Item(“CatName”).ToString()

Dim RoomId As Integer = _
dtChatRoom.Rows(currentRow).Item(“RoomID”).ToString()

Dim RoomName As String = _
dtChatRoom.Rows(currentRow).Item(“RoomName”).ToString()

3. Then, the Load event checks for new CategoryId values, adding nodes at this time for all of
the categories before even thinking about adding subnodes (that comes in a minute):

If CategoryId <> lastCategoryID Then
TreeView1.Nodes.Add(New TreeNode(CategoryName, CategoryId))

End If

4. Then, increment the currentRow counter and set the lastCategoryID variable to be the value
of the current CategoryId variable from the existing loop. This is a sort of flag or temporary
variable used to determine when the category column changes between records:

currentRow = currentRow + 1
lastCategoryID = CategoryId

5. Iterate to the next record:

Next
currentRow = 0

6. Now that you have all of the main categories in the TreeView, iterate through each of the
nodes:

For Each mNode As TreeNode In TreeView1.Nodes

7. Now, you need to obtain a row-level set of records for each of the nodes. Because each node has
a value, and each of the values is a CategoryId, you can find the exact rows you need from the
datatable by using the Select method of the datatable object. The following gets a datatable
with rows that are under each node’s category:

For Each drChatRoom In dtChatRoom.Select(“CatID=” & mNode.Value)
If Not drChatRoom.IsNull(0) Then

Dim RoomId As Integer = _
drChatRoom.Item(“RoomID”).ToString()

Dim RoomName As String = _
drChatRoom.Item(“RoomName”).ToString()

‘add the chat room node under that category

8. Finally, add the new node, for that ChatRoom specifically:

mNode.ChildNodes.Add(New _
TreeNode(“<a href=’chatroom.aspx?chatRoomID=” _
& RoomId.ToString() & “‘>” & RoomName & “”,

RoomId))
End If

Next
Next

89

Wrox Chat Server

06_749516 ch03.qxp 2/10/06 9:12 PM Page 89

Once the TreeView control on the default page is populated with the chat room records in the database,
you can click one of the nodes representing a chat room. These nodes are actually hyperlinks, directing
the browser to the ChatRoom.aspx page, explained in the following section.

ChatRoom.aspx
The ChatRoom.aspx WebForm is used to house the chat sending functionality of the application. Its goal
and purpose are to provide a one-way channel of asynchronous communication to a web site database,
within a specific chat room. This is performed via the technology of the new ASP.NET 2.0 Callback
method. A look at providing web-based callbacks is explained in detail within the “Wrox Chat Server
Design” section earlier in this chapter. The ChatRoom WebForm implements a Callback method to
send data to the server, but purposely ignores the response from the server coming back.

Several methods are located within this ASPX file, as well as its code-behind .vb file. These areas are bro-
ken down in the following table:

Method Location Description

Page_Load() Chatroom.aspx.vb Registers an embedded script for the use
of the Callback Manager middle layer,
which provides the necessary JavaScript
on the client.

MyClickEventHandler() Chatroom.aspx Calls the built-in Callback Manager’s
entry point, which is the CallServer()
method from the button’s Click event.
This CallServer() method is embedded
from the code-behind file when it registers
the client scripts on the Page_Load event.

RaiseCallbackEvent() Chatroom.aspx.vb Captures the call from the client and
processes it on the server, saving the
message to the chat room (saves it to the
database).

These methods provide a send-receive event pair, which makes up the main idea of the callback. Data is
captured within the ASPX file (via the MyClickEventHandler event) and sent off to the .vb code-behind
file (to the RaiseCallbackEvent event). From there it is saved to the database. No response data is
actually sent back to the client in this case, although it may be the case in a typical round-trip callback
implementation. In such a case, the other methods on the server and client are used, as they are in the
ChatWindow.aspx and its code-behind file, ChatWindow.aspx.vb.

The RaiseCallbackEvent contents are shown in the following code. Notice the call to the
ChatRoom.SaveMessage function, and how it accepts the ChatRoomID, the text of the message
(eventArgument), and the user’s e-mail address:

‘’’ <summary>
‘’’ the RaiseCallbackEvent captures the content from the
‘’’ chat message from the window...
‘’’ </summary>

90

Chapter 3

06_749516 ch03.qxp 2/10/06 9:12 PM Page 90

Public Sub RaiseCallbackEvent(ByVal eventArgument As String) _
Implements System.Web.UI.ICallbackEventHandler.RaiseCallbackEvent

If eventArgument.Length > 0 Then
ChatRoom.SaveMessage(Request.QueryString(“chatRoomID”), _

eventArgument, Session(“Email”))
End If

End Sub

The button and text area in the WebForm are used to process the user input and send it into the entry point
for the asynchronous call, through the local custom JavaScript method, entitled MyClickEventHandler().
The MyClickEventHandler() JavaScript event also performs an important role in making this callback
work. From here, the text is processed into the locally registered client callback proxy script. It is the first
step to making the server call from a browser script. The following code is the contents of the event. The
CallServer method is easy to spot, passing in the txtMessage value as a parameter:

function MyClickEventHandler()
{

//call the built-in function ‘callserver()’ on the click event
//this CallServer method is embedded from the codebehind file, as
//it registers the client script on the load event...
CallServer(document.getElementById(‘txtMessage’).value, null);
//clear the message box for the user
document.getElementById(‘txtMessage’).value = ‘’;

}

The load event of the page does something very important for using callbacks. It registers the
ReceiveServerData event and the CallServer event on the client. These are the main entry and
exit points of the Callback Manager layer, which provides the implementation of the asynchronous
xmlHttp posts to the server. Even though this WebForm used only the CallServer event in this case,
the ReceiveServerData event is registered on the client because it is useful for future troubleshooting
and enhancements to the circular page event cycle. Thus, the chat message is sent up to the server with
no response back to the client, because it doesn’t necessarily need any response.

The following is the Page_Load event. Notice the registration of the two methods:

‘’’ <summary>
‘’’ the Page_Load event will allow for the necessary callback script to be
‘’’ embedded into the browser’s javascript
‘’’ </summary>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles

Me.Load
Dim cm As ClientScriptManager = Page.ClientScript
Dim cbReference As String
cbReference = cm.GetCallbackEventReference(Me, “arg”, _

This WebForm uses half of the available ASP.NET 2.0 Callback method. That is, it
sends the callback data asynchronously, but does not need to capture anything from
the callback response. The other file, ChatWindow.aspx, does just the opposite.

91

Wrox Chat Server

06_749516 ch03.qxp 2/10/06 9:12 PM Page 91

“ReceiveServerData”, “”)
Dim callbackScript As String = “”
callbackScript &= “function CallServer(arg, context)” & _

“{“ & cbReference & “; }”
cm.RegisterClientScriptBlock(Me.GetType(), “CallServer”, _

callbackScript, True)
‘retrieve an instance of a chat room class by passing in the
‘chat room id as a parameter to the ‘get’ method
Dim mChatRoom As ChatRoom = ChatRoom.Get(_

Request.QueryString(“ChatRoomId”))
‘set the text of the label to the chat room name property
Label1.Text = mChatRoom.Name

End Sub

In addition to the registration of the two items above, some specific HTML and ASP.NET controls play a
critical role in implementing this callback function. The following represents the main HTML content of
the ChatRoom.aspx WebForm:

<iframe src=”ChatWindow.aspx?ChatRoomID=<%=Request.Querystring
(“ChatRoomId”) %>”

class=”ChatWindow” scrolling=”no”>
</iframe>
<textarea onkeypress=”return EnterKeyCheck(event);” id=”txtMessage”
rows=”4” style=”width: 231px”></textarea>

<input type=”button” value=”Send” onclick=”Javascript:MyClickEventHandler()”
style=”width: 57px; height: 60px” id=”Button1”/>

The iframe HTML tag is used to insert the view into another WebForm, ChatWindow.aspx, which acts
as the chat window the user reads messages from. This is because the actual receiving of messages from
the server is quite tricky, but is solved by yet another instance of the use of callbacks.

Now the ChatRoom.aspx WebForm has served its purpose in life. Keep reading, and you will see how
the ChatWindow WebForm fits into this experience.

ChatWindow.aspx
The ChatWindow.aspx WebForm uses a completely separate callback implementation to display the mes-
sages of all users within this chat room. It is not used to accept any user-chatted messages; however, it
does accept the ChatRoomID parameter for which it will retrieve records.

Several methods are located within this ASPX file, as well as its code-behind .vb file. These areas are bro-
ken down in the following table:

Method Location Description

Page_Load() ChatWindow.aspx.vb Registers an embedded script for the use
of the Callback Manager middle layer,
which provides the necessary JavaScript
on the client.

92

Chapter 3

06_749516 ch03.qxp 2/10/06 9:12 PM Page 92

Method Location Description

ReceiveServerData() ChatWindow.aspx Calls the built-in Callback
Manager’s exit point, which is the
ReceiveServerData() method. This
method is embedded from the code-
behind file when it registers the client
scripts on the Page_Load event. This
JavaScript method contains custom logic
that displays the result of the callback to
the user.

GetCallbackResult() ChatWindow.aspx.vb Prepares the return string value to be sent
back to the client. This string value is in
this case an HTML string full of message
data for a particular chat room.

These methods provide a send-receive event pair that makes up the main idea of the callback. Data is
accepted within the ChatWindow.aspx file (via the QueryString variable) and sent off to the .vb code-
behind file (to the GetCallbackResult event). From there it is used to query the database and find all
of the messages for that ChatRoomID. The records are prepared as an HTML string and sent back to the
client. This process is invoked via the use of a JavaScript timer event, which sends callback requests at
intervals of a second or more. Each callback request that is sent will engage an asynchronous call to the
server for the retrieval of more message data.

The following code shows the GetCallbackResult contents. Notice the call to the
GetMessagesForChatRoom function, and how it accepts the ChatRoomID as a parameter to retrieving
the messages from the database. Then, observe as it iterates through the DataSet and generates an
HTML string within the local Message variable. The Message variable is eventually returned to the
caller as a string value:

‘’’ <summary>
‘’’ the GetCallbackResult function returns the html string
‘’’ as a response back to the browser
‘’’ </summary>
Public Function GetCallbackResult() As String Implements _

System.Web.UI.ICallbackEventHandler.GetCallbackResult

Dim Message As String
Dim ds As DataSet = ChatRoom.GetMessagesForChatRoom(_

Request.QueryString(“chatRoomID”))
For i As Integer = 0 To ds.Tables(0).Rows.Count - 1

Message += “” & ds.Tables(0).Rows(i)(“Email”).ToString() & _
“ said: “ & ds.Tables(0).Rows(i)(“Text”).ToString() & “
”

Next
‘send back to the form...
Return Message & “
”

End Function

93

Wrox Chat Server

06_749516 ch03.qxp 2/10/06 9:12 PM Page 93

The receiving of data within the browser’s JavaScript is a critical part of the work and allows you to
update the browser with the result of the callback. Take a look at the ReceiveServerData method, as
the divChatWindow is assigned the text value of the callback results:

function ReceiveServerData(arg, context)
{

//send the value to the html control...
var obj = document.getElementById(“divChatWindow”);
obj.innerHTML = arg;
location.href = “#bottom”;

}

The load event of the page does something very important for using callbacks. It registers the
ReceiveServerData event and the CallServer event on the client. These are the main entry and exit
points of the Callback Manager layer, which provides the implementation of the asynchronous xmlHttp
posts to the server. In this case (different from the ChatRoom.aspx WebForm previously mentioned), the
application needs both calls for it to provide the messages from the database for a particular chat room.
The following code displays the Page_Load event. Notice the registration of the two methods:

Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles
Me.Load

Dim cm As ClientScriptManager = Page.ClientScript
Dim cbReference As String
cbReference = cm.GetCallbackEventReference(Me, “arg”, _

“ReceiveServerData”, “”)
Dim callbackScript As String = “”
callbackScript &= “function CallServer(arg, context)” & _

“{“ & cbReference & “; }”
cm.RegisterClientScriptBlock(Me.GetType(), “CallServer”, _

callbackScript, True)
End Sub

You should now understand the basic usage of each intrinsic and available area of the new ASP.NET 2.0
callback feature, how it works, and what the required code configurations are.

Thus, the ChatRoomID is received by the server, passed in as a parameter to a stored procedure call, and
data is returned via the asynchronous xmlHttp post. This data being returned is then displayed to the
user in the browser window via the local JavaScript receive method.

Phew! You made it. Pat yourself on the back as you skim through the user controls section ahead.

User Controls
Some specific user controls in the site assist with the navigation and content display for multiple pages.
Because web user controls promote a practice of creating and using reusable code, they were made to be
applicable within multiple pages of the site, depending on the nature of the controls.

This WebForm uses the entire callback process. That is, it sends the callback data
asynchronously and captures HTML in a string variable from the server’s callback
response.

94

Chapter 3

06_749516 ch03.qxp 2/10/06 9:12 PM Page 94

header.ascx
The header user control is used to provide the top area of each page with meaningful content. If any-
thing needs to reside at or near the top of a web page, you should add it to the header control so it is
visible through all of the pages.

The following code represents entire header.ascx source:

<%@ Control Language=”VB” AutoEventWireup=”false” CodeFile=”header.ascx.vb”
Inherits=”Controls_header” %>
<div style=”text-align: center”>

<table><tr>
<td></td>
<td><h1><% Response.Write(Page.Title) %></h1>
</td>

</tr></table>
</div>

Notice that the <%Response.Write(Page.Title)%> tags are used to write back to the response stream
a title of the web site on the top of each page, which originated from the Web.config file.

footer.ascx
The footer user control is used as the bottom section of the site, for each page that uses the master
page. That is, the footer control, among others, is a referenced control within the master page. In this
way, it is propagated to all pages in the same exact manner.

The content of the footer control is displayed here:

<%@ Control Language=”VB” AutoEventWireup=”false” CodeFile=”footer.ascx.vb”
Inherits=”Controls_footer” %>
© 2005 Wrox Press
Login

This excerpt includes a few hyperlinks. One is for the Wrox Press web site, and the other is a link to the
Login page for the chat application.

navigation.ascx
The navigation user control is used to provide the reusable menu on each page in the site. The Menu
itself is a brand new ASP.NET 2.0 control that binds to a SiteMapDataSource control, also new in the
2.0 version of the .NET Framework. The SiteMapDataSource control is used to bind to an XML file,
wherein the site files are listed as entries in the XML file. This is where you can change the data that
feeds the menu of the site.

The following excerpt is the HTML markup of the navigation control:

<%@ Control Language=”VB” AutoEventWireup=”false” CodeFile=”navigation.ascx.vb”
Inherits=”Controls_navigation” %>
<asp:Menu ID=”Menu1” runat=”server” DataSourceID=”SiteMapDataSource1”
Orientation=”Horizontal”

StaticDisplayLevels=”2”></asp:Menu>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” runat=”server” />

95

Wrox Chat Server

06_749516 ch03.qxp 2/10/06 9:12 PM Page 95

The XML file of the SiteMapDataSource control is shown here:

<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >
<siteMapNode url=”ContentFiles/default.aspx” title=”Home”>
<siteMapNode url=”ContentFiles/about.aspx” title=”About” />
<siteMapNode url=”ContentFiles/contact.aspx” title=”Contact Us” />

</siteMapNode>
</siteMap>

To add a page to the menu of the web site, you must simply copy and paste (with the necessary modifi-
cations) an entry of the preceding XML file. In this way, the master page (which contains the only refer-
ence to the navigation control) provides visibility to the menu of the site on each page.

The next section explains in detail how to install and configure the source files of the Wrox Chat Server
and how to deploy the site to a server in a production environment.

Setting up the Project
The time has come to learn how to install the Wrox Chat Server and see for yourself how quickly you
can be up and running with a working resource application. You can install the web site either as a
hosted web site application or as a source codebase for editing in Visual Studio 2005 or VWD.

Hosted Web Site Installation
If you want to install the Wrox Chat Server as a hosted web site on a computer or server without cus-
tomizations or enhancements at all, follow these steps (assuming the .NET Framework 2.0 is already
installed):

1. Open the folder Chapter 03 – Wrox Chat Server from the CD-ROM that came with this book and
double-click the setup.exe file.

2. This process installs the files properly for hosting the web site locally to C:\inetpub\wwwRoot\
ChatServer as a file-based web site application. Click Next to install the application, and close
the installation program when it completes.

3. Then, browse to your local web site (for example, http://localhost/ChatServer). The Wrox
Chat Server application should appear.

4. Finally, if you need to expose the site to the outside world, be sure to configure the public IP
address to the IIS web site application. The details of this IIS configuration and its implications
are outside the scope of this book, but the Wrox Chat Server is easily configurable as a public
web site with a brief tutorial on web site hosting.

Local Developer Installation
If you would like to open the project in Visual Studio or Visual Web Developer, perform the following
steps (assuming the .NET Framework 2.0 is installed, along with either Visual Studio 2005 or VWD):

96

Chapter 3

06_749516 ch03.qxp 2/10/06 9:12 PM Page 96

1. Create a brand new web site in Visual Web Developer or Visual Studio 2005.

2. Open the folder Chapter 03 – Wrox Chat Server from the CD-ROM that came with this book and
extract the contents of the file ChatServerSource.zip to a folder on your hard drive.

3. Open a Windows Explorer and browse to the folder that contains the unpacked files. Next,
arrange Visual Web Developer and the Windows Explorer in such a way that both are visible at
the same time.

4. In the Windows Explorer, select all of the folders and files within the codebase and drag them
from the explorer window into the Solution Explorer in Visual Web Developer. If you’re prompted
to overwrite files, select Yes. You should end up with a Solution Explorer that contains all of the
necessary files for the project to run properly.

5. Press F5 to run the application in the development environment.

For some insight on how you can modify your project in order to take advantage of some of the possible
uses of the Wrox Chat Server, find this book’s download page at www.wrox.com.

Summary
This chapter reviewed some of new controls within the ASP.NET 2.0 Framework, such as the Callback
method, SiteMap control, the SiteMapDataSource, the use of Master Pages, and the databound Menu
control. The flow of the chapter was centered around a standard approach to application design, using
business layer classes, data layer classes, and a basic database structure. You learned how each of these
new controls can save development time and effort in great proportions.

The “Wrox Chat Server Design” section provided a glimpse at the technology behind the Callback fea-
ture, because it shines in version 2.0 of the .NET Framework as one of the much-needed features for
developers to use. The section also touched on class files in use, their properties, their methods, and the
general purposes of each. It also gave visibility to the database tables, their relationships, and general
entities displayed as classes.

The chapter finished with the necessary additions to provide a basic enhancement to the system, allow-
ing for the chat system to automatically respond to user messages during off-hours.

97

Wrox Chat Server

06_749516 ch03.qxp 2/10/06 9:12 PM Page 97

06_749516 ch03.qxp 2/10/06 9:12 PM Page 98

4
Wrox Survey Engine

If you have ever taken an online survey before, you might have found that it is often very interest-
ing to see the results and nod your head in agreement. Surveys can produce a sense of intrigue to
the viewer, because they are aimed at gathering and compiling information about public opinion.
The political scene is constantly speculating based on the polls and surveys conducted for a given
set of people. Company changes and truckloads of monetary investments are made at the helm of
an informative survey. You also may have noticed that surveys are often intentionally aimed and
phrased to make sense to the average user. In fact, surveys are one of the proven best ways of
extracting information from web users of the general public. Online surveys are found all over
the Internet and have been a source of valuable data for companies of various sizes. The user is
prompted with very simple and easy-to-understand questions that offer enticing answers from a
list of multiple choices. Results from the survey questions are compiled immediately and available
to management personnel for many times what proves to be important decisions for the company
or department. It makes perfect sense, then, to implement surveys in order to ascertain the true
state of a group or market sector.

The Survey Engine is an interesting application. It is easily reproducible in various environments
with any number of multiple-choice questions. Once a survey has been conducted, the information
gathered should be available to view in an organized and legible format. Reports can be run on
survey results to demonstrate the responses of the majority.

The Wrox Survey Engine is a great example project that you can learn from in your valiant effort of
tackling ASP.NET 2.0. This survey management web site provides the ability for an admin user to
create surveys and monitor their results through the use of a user-friendly interface.

07_749516 ch04.qxp 2/10/06 9:13 PM Page 99

The Wrox Survey Engine provides a list of useful features, including the following:

❑ Create a survey on the fly.

❑ View survey responses with percentages.

❑ Embed surveys into an existing web site.

These features comprise the core functionality of the web site, with room for plenty of enhancements
and modifications.

This chapter demonstrates how easy it is to implement some of the newer controls and techniques avail-
able in ASP.NET 2.0. Some of these new areas include the ObjectDataSource control, enhanced SQL
Server DataSource control, ASP.NET Web Security Interface, the application of themes at the Web
.config file level, the new navigation controls, the login and password retrieval controls, and the use
of master pages within a solution.

In the section “Wrox Survey Engine Design” you explore the design of the application in great detail.
This includes the database file structures, class designs, a basic inheritance model, and the loosely cou-
pled application architecture.

The section titled “Code and Code Explanation” performs a methodical examination of the code, break-
ing down the important modules and functions and explaining their role from the GUI to the database
and back. In addition, it reviews the logic within the classes involved, and some possible modifications
you can make to the project with specific instructions.

The final section, “Setting up the Project,” reviews how to extract and customize the Survey Engine in a
development environment and how to install it to production.

But first things first: a review of the basics of using the Survey Engine.

Using the Wrox Survey Engine
Using the Wrox Survey Engine is a remarkably simple task. It is essentially a web site that has been
developed to be the starting point for a company or an individual to easily and quickly create online
surveys. Only a few pages are needed for an individual to complete a survey, because it is simply a list
of multiple-choice questions with no right or wrong answers. This lends itself well to implementing a
reusable component or module to generate a survey because every survey has questions and exactly
four possible choices.

If the Wrox Survey Engine web site has been successfully installed (refer to the section “Setting up
the Project” later in this chapter), you can browse to view the site by going to http://localhost/
surveyengine. You’ll see the screen shown in Figure 4-1.

100

Chapter 4

07_749516 ch04.qxp 2/10/06 9:13 PM Page 100

Figure 4-1

At the top of the homepage are several links to choose from:

❑ Home

❑ About

❑ Contact Us

❑ Admin

On the homepage, you will see a rounded box area toward the bottom of the page. This is essentially the
hyperlink the user can click in order to take a survey. As you click the link, you are brought to the page
used to present all of the survey questions at one time (see Figure 4-2).

101

Wrox Survey Engine

07_749516 ch04.qxp 2/10/06 9:13 PM Page 101

Figure 4-2

Multiple choices are given (A, B, C, D), from which users can pick to answer the survey questions. Once
you select an answer for every question, you can click the View Results button to submit the form, at
which point you’ll see the screen depicted in Figure 4-3.

Now that the survey has been submitted, you will see the results for the survey so far. As more people
complete surveys on the web site, the statistics will obviously change.

102

Chapter 4

07_749516 ch04.qxp 2/10/06 9:13 PM Page 102

Figure 4-3

That actually concludes the main portion of content that the typical user would be exposed to. Behind
the scenes, however, an administration section provides you with a great way to quickly and easily cre-
ate surveys and view their responses.

When you click the Admin link in the main menu, you are brought to the login screen if you have not
already logged into the web site and created a session. Figure 4-4 shows the login interface.

This page has a login feature and a password retrieval feature for you to use. Enter Admin for the user-
name and password# for the password and click the Log In button.

103

Wrox Survey Engine

07_749516 ch04.qxp 2/10/06 9:13 PM Page 103

Figure 4-4

Once you log in to the site, you are brought to the Administrator landing page, displayed in Figure 4-5.

This Administrator page provides a grid of all of the surveys that exist in the system. Each survey in the
grid has several features you can choose from in order to perform administrative functions, including
the following:

❑ Create a new survey.

❑ Edit the questions or name of an existing survey.

❑ Add additional questions to an existing survey.

❑ View responses of a survey.

❑ Designate a specific survey to be the one that is displayed to the user.

By clicking any one of the hyperlinks in the grid, you navigate to the appropriate pages to complete the
activity selected. These pages are described in the sections that follow.

104

Chapter 4

07_749516 ch04.qxp 2/10/06 9:13 PM Page 104

Figure 4-5

Adding a New Survey
One of the very first selections you may want to invoke could be the Add Survey Wizard, via the link
that exists on the bottom-left of the page, or the New link in any of the rows of the data grid. Once
clicked, the Add Survey Wizard appears and prompts you for specific information on the survey you are
trying to add. Figure 4-6 depicts this process.

This figure illustrates the beginning of the wizard, with a Next button on the bottom right. This is a
brand-new control to ASP.NET 2.0, and the next section, “Wrox Survey Engine Design,” dives into its
usage scenarios and details.

By clicking Next, you can enter a name for the new survey, as shown in Figure 4-7.

105

Wrox Survey Engine

07_749516 ch04.qxp 2/10/06 9:13 PM Page 105

Figure 4-6

Figure 4-7

106

Chapter 4

07_749516 ch04.qxp 2/10/06 9:13 PM Page 106

In the text box at the top of the screen, you can enter in a name for your new survey. This example new
survey is titled “Are you Addicted to Email?” Once you enter the title of your choice, click Next to con-
tinue. You are brought to the screen in Figure 4-8, the next step in the wizard.

Figure 4-8

Figure 4-8 displays a multi-line text box used to store lengthy descriptions about the survey, which are
displayed beneath the name of the survey to the user. Once the description has been entered, click Next
to go to the Add Questions page, as displayed in Figure 4-9.

You can enter one question and its correlating answers at a time, clicking the Save Question button to
save them to the database. After the questions have been entered, click Next, and know that the survey
and its questions are now completely entered into the database. This final page of the New Survey is
shown in Figure 4-10.

In addition to creating new surveys, you also have the ability to edit existing surveys.

107

Wrox Survey Engine

07_749516 ch04.qxp 2/10/06 9:13 PM Page 107

Figure 4-9

Figure 4-10

108

Chapter 4

07_749516 ch04.qxp 2/10/06 9:13 PM Page 108

Editing an Existing Survey
If you want to edit an existing survey, you can do so by returning to the Administrator page by clicking
the Admin link in the menu bar. Then, click one of the Questions survey row-links. This link loads a
page used to manage the existing questions for an existing survey, depicted in Figure 4-11.

Figure 4-11 displays each of the questions within a given survey, with clickable hyperlinks in each row
provided in order to add, edit, or delete questions for any survey.

So the basic usage of the Survey Engine is summarized as a way of creating and displaying a survey from
the web site, and providing management tools to monitor and control the survey as it is responded to.

The next section provides insight to the technically challenging portions of the application and how they
all fit together to form the solution. You learn how the classes are modeled and where the important
design elements reside.

Figure 4-11

109

Wrox Survey Engine

07_749516 ch04.qxp 2/10/06 9:13 PM Page 109

Wrox Survey Engine Design
This section provides a detailed look at the inner workings of the web site application, focusing on the
classes involved and the integration of data-bound controls to their object connections and SQL Server
data connections.

The design of the Wrox Survey Engine is an object-oriented and logically tiered approach, using a limited
amount of logical abstraction between the client, business, and data layers of the application. This allows
for a developer to conceptualize how the application could be separated into multiple projects, spanning
servers and/or locations. This section also explains in detail the two approaches used to bind data to
form elements: the SQL Server DataSource and the ObjectDataSource controls.

This topic, as well as other areas of the architecture, is expounded upon later within this section.

Object Binding and SQL Server Data Binding
In an effort to develop an application rapidly and efficiently, there is always a tradeoff for developers to
consider. Some project planning and design sessions may point toward the use of faster and lightweight
GUI controls to perform the bulk of the work for the developer, saving countless hours of effort. A spe-
cific example of lightweight GUI controls would be the GridView and DataList controls. These allow
you to drag and drop controls to a WebForm, set some properties in Design View, and run the applica-
tion. Without writing one line of VB .NET or C# code, you can configure a data source and data-bound
control to render completely on the WebForm. The new ASP.NET 2.0 control creates the ADO.NET
Connection, Command, Dataset, or DataReader objects for you, providing everything you need to
bind to the data at run time. It also properly handles the events used for data binding on the page —
something that ASP.NET 1.1 did not do for you (Phew! Thank goodness!). These are in fact a great set of
features to take advantage of. But even so, many programmers will read through this book to learn the
more extensive and far-reaching features of ASP.NET 2.0, moving on as programmers in the new and
improved .NET universe, and rightly so. But for those who are interested in larger-scale deployments
with ASP.NET 2.0, it is a worthwhile effort to identify the reasons why the tradeoffs of using more scal-
able architectures, and what you are losing or gaining with each methodology in ASP.NET 2.0 specifi-
cally. The scalability of an architecture has a lot to do with the load it can carry in cases where a large
volume of data is involved, or a heavy amount of processing is required. It also refers to the level of con-
trol that exists in throttling or directing the processing, traffic, or data appropriately. ASP.NET 2.0 han-
dles such cases with several intrinsic benefits that set it apart as a world class platform for development.

Truly decoupled architectures in the industry are more often seen in larger corporate application devel-
opment cycles and are usually designed as more generic and pattern-based. The decoupled approach
tends to isolate user, business, and data layers of an application into specific sections, allowing each to
function independently. This is the nature of distributed development, and has evolved into what is
sometimes referred to as composite applications. The distributed design would tend to only provide data-
base execution logic within a layer of code (classes) that are specifically positioned and designed to
make such data calls. Only those classes are able to extract and handle data out of the database, acting as
a go-between for the other application modules or classes. As such, the use of business objects (such as
the Survey class) would allow a request for data to go out to other classes as a data layer (for example,
the SurveyDB class), returning data back to the client and binding to the data grid, list box, and so on.
This approach is generally acceptable for most applications.

110

Chapter 4

07_749516 ch04.qxp 2/10/06 9:13 PM Page 110

In this area of object and data binding, you will notice in this Wrox Survey Engine application we make
use of the built-in ASP.NET ObjectDataSource controls to bind data from business objects to GUI
(graphical user interface) controls. This in many ways mimics a decoupled, object-based approach that
has been held as a best practice in recent years, but by itself may not provide all of the custom and
robust features that a corporate project’s requirements or design may mandate. Some class objects need
to be serialized and transferred through an Internet connection between tiers, in order to allow for the
separate server environments. Other class objects or modules are pooled and managed closely using
process instrumentation (WMI) or ASP.NET performance monitors (PerfMon). These additional object-
level requirements can be met using the ObjectDataSource controls, but it may require additional
development and is worthy of mentioning in the course of this book.

In addition to the ObjectDataSource controls, the Wrox Survey Engine also uses the SQL Server
DataSource controls to extract data from the SQL Server Express 2005 database files and bind it to the
GUI controls. Contrary to this line of thinking, the SqlDataSource controls are typically designed as
a quick and dirty way to select records from a database and bind them to a form. This process actually
includes the SQL statements in the markup of your ASPX files. In direct opposition to a safer and more
distributed approach of the decoupled tiers, this poses a risk to the application and management thereof.
As more users access such pages, more database connections may be created (depending on the connec-
tion strings used), thereby increasing the number of pooled or non-pooled connections to the database
on the server. This can ultimately cause a loss of scalability, and speed, and if not used carefully could
pose a risk to sites with heavy traffic. The use of the SqlDataSource controls also requires updates to
the source ASPX files of your site whenever database changes are made that affect your queries or stored
procedures. This is not ideal for an application to maintain a predictable and manageable state. But as
stated in other chapters, and expounded herein, such risks are overlooked, instead providing a meaning-
ful experience with both the ObjectDataSource and the SqlDataSource controls.

Structure of the Site
The site has been structured in an organized fashion, with files contained within folders that make sense
for maintaining the code in the most efficient manner. The Controls folder houses all of the user controls,
and the ContentFiles folder contains the main ASPX WebForm files of the web site.

The different folder sections of the web application are listed in the following table:

Folder Description

App_Code Houses the business layer class (survey.vb) and the data layer class
(surveyDB.vb).

App_Data The standard .NET folder for database files.

App_Themes The themes folder, containing two themes for use with the site.

ContentFiles The standard ASPX WebForm files for displaying content.

Controls Stores all user controls.

Images Stores images for the header or any other pages.

Management Stores the secured administrative WebForm pages.

Miscellaneous files These include the Login page, the Web.config file, the sitemap file, and the
master page file at the root of the site.

111

Wrox Survey Engine

07_749516 ch04.qxp 2/10/06 9:13 PM Page 111

Figure 4-12 is a developer’s view of the project’s folders and files from within the Solution Explorer.

Figure 4-12

The next section explains the main database entities involved and how the various survey concepts are
implemented within the database.

Data Model and Database Objects
The data model is very simple in nature, being comprised of essentially three basic data elements:

❑ Surveys

❑ Questions

❑ Responses

Each survey has questions, for which you or any web user can provide their own selections, which gen-
erates the response values. As such, Figure 4-13 displays a diagram of the database tables involved.

Figure 4-13

Detailed explanations of each of the three tables appear in the subsequent sections.

112

Chapter 4

07_749516 ch04.qxp 2/10/06 9:13 PM Page 112

The following table describes the contents of the Question table:

Field Name Data Type Description

ID Int The unique identifier for this record.

SurveyID Int The survey to which this question belongs.

Text varchar(1000) The actual question text.

OptionA varchar(1000) The first of four choices.

OptionB varchar(1000) The second of four choices.

OptionC varchar(1000) The third of four choices.

OptionD varchar(1000) The fourth of four choices.

The next table outlines the Survey table:

Field Name Data Type Description

ID Int The unique identifier for this record.

Name varchar(200) The name given to the survey.

Description varchar(1000) The text description given to the survey.

Date Datetime The date and time stamp at the time that the survey
was created.

IsCurrentSurvey Char(1) The 0 or 1 value indicating that the survey is the one
used within the web site as the currently displayed
survey. 1 represents that the record is the current
survey, and 0 signifies the record is not the current
survey.

The following table details the contents of the Response table:

Field Name Data Type Description

ID Int The unique identifier for this record.

QuestionID Int The question ID to which this response applies.

Selection Char(1) The A, B, C, or D value corresponding to the user’s
selection for the question being responded to.

In addition to these three tables, a number of stored procedures are in use. They follow a consistent nam-
ing pattern with the other chapters, as shown here:

113

Wrox Survey Engine

07_749516 ch04.qxp 2/10/06 9:13 PM Page 113

❑ sprocTableNameSelectList

❑ sprocTableNameSelectSingleItem

❑ sprocTableNameInsertUpdateItem

In such fashion, the following stored procedures are used in the application:

❑ sprocQuestionDeleteSingleItem

❑ sprocQuestionInsertUpdateItem

❑ sprocQuestionSelectList

❑ sprocResponseInsertItem

❑ sprocSurveyInsertUpdateItem

❑ sprocSurveySaveSingleItemAsCurrent

❑ sprocSurveySelectList

❑ sprocSurveySelectSingleItem

❑ sprocSurveySelectSingleItemWhereCurrent

As you can see, the naming convention allows you to easily and quickly find the stored procedures that
apply to a specific table, and whether they are selects, inserts, updates, or deletes.

Several noteworthy stored procedures should be reviewed. The first procedure selects a single survey
record from the database to display in the CurrentSurvey user control on the Default.aspx homepage:

ALTER PROCEDURE dbo.sprocSurveySelectSingleItemWhereCurrent
/*’===
‘ NAME: sprocSurveySelectSingleItemWhereCurrent
‘ DATE CREATED: October 5, 2005
‘ CREATED BY: Shawn Livermore (shawnlivermore.blogspot.com)
‘ CREATED FOR: ASP.NET 2.0 - Instant Results
‘ FUNCTION: Returns the ‘current’ survey from the database.
‘===
*/
as

select top 1 * from Survey where iscurrentsurvey = 1

As you can see, the level of complexity within these stored procedures is down to a minimum in this
project. The simple table structure of the application is partly the reason for the ease of use and low level
of design complexity.

The next procedure is used to select out all of the questions for a given survey ID:

ALTER PROCEDURE dbo.sprocQuestionSelectList
/*’===
‘ NAME: sprocQuestionSelectList
‘ DATE CREATED: October 5, 2005
‘ CREATED BY: Shawn Livermore (shawnlivermore.blogspot.com)

114

Chapter 4

07_749516 ch04.qxp 2/10/06 9:13 PM Page 114

‘ CREATED FOR: ASP.NET 2.0 - Instant Results
‘ FUNCTION: retrieves all questions and options for a
‘ specific survey from the database.
‘===
*/
(@id int)

as

SELECT Question.SurveyID, Question.Text, Question.OptionB, Question.OptionA,
Question.OptionD, Question.OptionC, Question.ID
FROM Survey INNER JOIN Question ON Survey.ID = Question.SurveyID
WHERE (Survey.ID = @id)

These are the basic stored procedures used as examples, but entirely common for these types of
applications.

In addition to stored procedures and tables, the Wrox Survey Engine also employs the use of views to
provide visibility to somewhat complex queries used to display the percentage results of a survey’s
questions. These views are as follows:

❑ viewAnswerPercentByQuestion

❑ viewAnswerSumByQuestion

❑ viewNumberResponsesBySurvey

❑ viewQuestionCountBySurvey

❑ viewResponseCountBySurvey

These are used in conjunction with one another as dependencies, where one view uses or points to the
fields of another view. The end result of the views is the viewAnswerPercentByQuestion, which is
used by the SurveyResults user control.

Themes and Skins
The project provides a simple way in which to apply themes and skins to each page of the site, without
modifying any HTML markup sections on any page (even the master page is safe from special control-
based HTML markup). You can apply a theme to the entire web site by modifying the Web.config file to
point to the name of your theme (assuming the theme exists in your project under the App_Themes
folder). This is carried out within each ASP.NET form by using the following code in each of the form’s
pre-initialization events:

Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.PreInit

‘this preinit event fires to initialize the page
‘it allows for the theme and title to be set for this page,
‘which actually pulls from the web.config setting
‘via the shared Config class’s exposed properties.
Page.Theme = Config.CurrentTheme
Page.Title = Config.PageTitle

End Sub

115

Wrox Survey Engine

07_749516 ch04.qxp 2/10/06 9:13 PM Page 115

This code accesses the config class’s properties (pulled from the Web.config file), and sets the page’s
theme member to be the current theme value. In this way, you can maintain a consistent experience
throughout the web site, with only one change needed to the Web.config in order to change the look
and feel of the entire user experience! You are probably glad to hear that — I know I am. The exact place
where you would change the theme for the site is in the appSettings section of the Web.config, as
displayed here:

<!--
<add key=”CurrentTheme” value=”CleanBlue” />

-->
<add key=”CurrentTheme” value=”CleanRed” />

This code displays one of the theme entries as commented out, and one of them as active. Simply swap
the two values in order to make the change.

Security Model
The project uses ASP.NET 2.0 Forms Authentication with a SQL Server Security Provider. The initial des-
ignation to use this provider from within the ASP.NET Security Administration tool generates a new
security database, which is included in the project and used to house all of the user account information
and security settings. This security model implements Forms Authentication intrinsically within the var-
ious new ASP.NET 2.0 security controls, such as those used to log in, display login status, recover your
password, change your password, and create a new user.

The security model mentioned is utilized and referenced in several areas of the application. One such
area is in reference to the Management folder of the site. The security model allows you to log in to the
web site, and become an authenticated user. The login.aspx form is loaded automatically whenever you
try to access any of the ASPX files in the Management folder without first being unauthenticated. This
is a clear glimpse at the new ASP.NET 2.0 security model implemented via the Role and Membership
Providers. The configuration is such that the only provision to implement such security is an instance of
the ASP.NET Login control, such as the following example:

<asp:Login ID=”Login1” runat=”server” />

As a practical use, this provides a clear example of a secure web site folder and the use of role-based
access to pages within that folder via the ASP.NET 2.0 Configuration Tool. This tool is essentially used
simply for security-rights management. The ASP.NET 2.0 Configuration Tool can be accessed within
Visual Studio by clicking Website➪ASP.Net Configuration from the menu. Once the tool fully loads
you’ll see a Security tab. Clicking the Security tab enables you to modify the settings of any folder within
your site to allow or restrict access based on roles that you can define and assign users to. The output of
this effort generates the Web.config file that lies within the folder that you specified to restrict access to.
The following is an example of this Web.config file output:

<?xml version=”1.0” encoding=”utf-8”?>
<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>

<system.web>
<authorization>

<deny users=”?” />
<allow roles=”Admin” />
<allow roles=”SuperAdmin” />

116

Chapter 4

07_749516 ch04.qxp 2/10/06 9:13 PM Page 116

</authorization>
</system.web>

</configuration>

This configuration file uses three main entries as the meat of the security settings. These are essentially
a series of statements in XML format that define the security rights for that folder, hierarchically within
the web site, overriding the web site’s root Web.config, as well as the machine.config on the server.
In this file, the <deny users=”?” /> phrase means that the folder should deny any unauthenticated
users, denoted by the question mark. Next, the <allow roles=”Admin” /> and the <allow
roles=”SuperAdmin” /> entries both represent the ability of the folder to allow access to Admin
or Superadmin roles.

Two accounts are created for use within the Survey Engine, and two different roles that those accounts
are assigned to, respectively. These are as follows:

Username Password Account Description

Admin password# This user is assigned to the Administrator role.

SuperAdmin password# This user is assigned to the Super Administrator
role.

The following two roles are already in the security database and referenced within the application for
certain areas of interest to remain very secure:

Role Role Description

Administrator This role has the ability to add, edit, and delete surveys and their
questions.

Super Administrator This role has the same privileges as the Administrator role, but also can
delete surveys and/or their individual questions from the system.

Thus, you can control access to form elements and folders alike, using the ASP.NET Configuration Tool,
or your own scripted logic in VB .NET.

Classes Involved
Only a few basic classes are in use for the Wrox Survey Engine, but they are intelligent classes that are
designed to work in an object-friendly fashion. That is, in a typical object-oriented environment, the class
structures would seem to fare well as compared to other object structures.

The SurveyBase Class
The SurveyBase class (see Figure 4-14) is essentially the inheritable base class to which every survey
refers. It allows the derived Survey class objects to provide exposure to the Save and New methods for
consistent and convenient class management.

117

Wrox Survey Engine

07_749516 ch04.qxp 2/10/06 9:13 PM Page 117

Figure 4-14

The following table describes the methods available to the SurveyBase class:

Method Return Type Description

New() n/a The constructor for the SurveyBase class

Save() Int The save method used to save the derived
survey class object

The Survey class follows the SurveyBase class, because it is a class that inherits from the SurveyBase
class. This provides access to shared methods and functionality within the SurveyBase class.

The Survey Class
The Survey class (see Figure 4-15) is used to perform the bulk of the object provisioning for the business
layer of the application. Its methods are accessible as public and shared for ease of use within the vari-
ous forms and controls of the application. This means that you do not have to instantiate an instance of
the Survey class in order to call its methods. Instead, simply use the syntax of Survey.MethodName()
in any VB .NET WebForm or control of the application to execute the function.

The following table displays the accessible members of the Survey class:

Method Return Type Description

Delete n/a Deletes a survey from the database by calling
Delete() in the SurveyDB class.

DeleteQuestion n/a Deletes a question from the database by calling
DeleteQuestion() in the SurveyDB class.

Get Survey Class Retrieves a survey from the database by calling
Object Get() in the SurveyDB class.

GetCurrentSurvey DataSet Returns the current survey from the database.

118

Chapter 4

07_749516 ch04.qxp 2/10/06 9:13 PM Page 118

Method Return Type Description

GetQuestionIDs Collection Gets a set of question IDs for a given survey.

GetQuestions DataSet Gets a set of questions and their multiple choices
for a given survey.

GetSurveyList DataSet Returns a list with surveys in the specified
category from the database.

New n/a Provides potential functionality to process actions
and information on the create event for the object.

Save Integer Saves a survey in the database by calling Save()
in the SurveyDB class. Because this class inherits
the SurveyBase class, the Save method is
overrideable and the Me keyword is utilized.

SaveQuestion Boolean Saves a set of questions for a survey.

SaveResponses Boolean Saves a set of answers to questions for a given
survey.

SaveSurvey n/a Saves a survey to the database.

SaveSurveyAsCurrent n/a Saves a survey as the current survey.

Figure 4-15

119

Wrox Survey Engine

07_749516 ch04.qxp 2/10/06 9:13 PM Page 119

The next class represents the callable data-related methods of the application.

The SurveyDB Class
The SurveyDB class (see Figure 4-16) is used to as the data layer of the application. It is essentially the
main go-between for all method calls from the business tier that require access to the database. No other
class or code section of the application makes data-related executions except for this SurveyDB class.

Figure 4-16

The following table displays the accessible members of the SurveyDB class:

Method Return Type Description

Delete n/a Deletes a survey from the database.

DeleteQuestion n/a Deletes a question from the database.

Get Survey Returns in instance of the class by sending in
the survey ID.

GetCurrentSurvey DataSet Retrieves the current survey from the
database.

GetQuestionIDsForSurvey Collection Retrieves a collection of survey question IDs
from the database.

GetQuestionsForSurvey DataSet Retrieves a DataSet of survey questions from
the database.

GetSurveyList DataSet Retrieves a DataSet of surveys from the
database.

Save Integer Saves a survey to the database.

120

Chapter 4

07_749516 ch04.qxp 2/10/06 9:13 PM Page 120

Method Return Type Description

SaveQuestion Boolean Saves a question to the survey in the
database.

SaveResponses Boolean Saves a response to the question in the survey.

SaveSurveyAsCurrent n/a Makes a specified survey the current one
within the database.

The next class portrays the configuration class that has been commonly used in this book.

The Config Class
The Config class, depicted in Figure 4-17, is used as the configuration manager of the application. It
is essentially the main access point for all configuration settings that any of the application tiers may
require access to. No other class or code section of the application makes configuration-related calls
except for this Config class.

Figure 4-17

The following table displays the accessible members of the Config class:

Property Return Type Description

ConnectionString String The connection string property that pulls
from Web.config.

CurrentTheme String The current theme of the web site as defined
in the Web.config file.

PageTitle String The HTML title value that each page displays,
as defined here from the Web.config file.

So you have a good idea at this point about what classes are involved in the application, and how those
classes may be used. The next section explains the detailed business logic within the application and the
processes or workflow that they accommodate.

121

Wrox Survey Engine

07_749516 ch04.qxp 2/10/06 9:13 PM Page 121

Code and Code Explanation
This section explains each of the essential code files in the Wrox Survey Engine project. You look in detail
at the files in the each of the different folders and learn how they interact and are used across the project.

Root Files
The root of the Wrox Survey Engine contains several important files, including the main ASPX shell-
pages, and the configuration and formatting pages.

Web.config
The Web.config stores vital configuration entries used within the application. One entry, named the
SqlServerConnectionString, controls the connection to the database, as shown here:

<connectionStrings>
<add name=”ConnectionString” connectionString=”Data
Source=(local)\SqlExpress;AttachDbFilename=|DataDirectory|\SurveyDB.mdf;Integrated
Security=True;User Instance=True” providerName=”System.Data.SqlClient”/>
</connectionStrings>

The SqlServerConnectionString also contains information managing the SMTP e-mail settings for
sending out e-mails:

<appSettings>
<add key=”EmailFrom” value=”admin@mysurveyengine.com” />
<add key=”EmailTo” value=”admin@mysurveyengine.Com” />

The Web.config is also used to provide easy modification to the themes in use for the entire site. You can
find more information on this in the “Themes and Skins” section earlier in the chapter.

Survey.vb
The Survey class is one of the most important areas of the Survey Engine application. The class contains
methods and properties that allow for the storage of survey-related information and logic to implement
updates to that information within the data access layer. Some of the methods provide access to the gen-
eral information for surveys, whereas others provide the capability to obtain a full dataset of all surveys.
In addition, the GetQuestions method returns all of the questions for any given survey.

This Survey.vb class can also be bound to an ObjectDataSource control within the user interface,
thereby providing a business layer for the application. Its methods are listed as public and shared to pro-
vide a more rapid development model without being required to instantiate an instance of the Survey
class in order to call its methods or access its members.

By using #Region tags in the Survey.vb class file, the Visual Studio IDE allows the page to be grouped
into organized sections. Sections that are commonly used to group the code in this way include
Variables, Constructors, Methods, and Properties. This does not impact the .NET assemblies in any way,
but is simply a great way to maintain organized logic. Figure 4-18 is a visual display of the regionalized
code as it is displayed within the Visual Studio IDE.

122

Chapter 4

07_749516 ch04.qxp 2/10/06 9:13 PM Page 122

Figure 4-18

One of the more important method calls of the survey is the SaveSurvey method. The code for this is as
follows:

Public Shared Sub SaveSurvey(ByVal Name As String, ByVal Description As String,
ByVal ID As Integer)

Dim mSurvey As New Survey
mSurvey.ID = ID
mSurvey.Name = Name
mSurvey.Description = Description
SurveyDB.Save(mSurvey)

End Sub

This method provides the means by which to hand off a Survey class object to the data tier for
processing.

Config.vb
The Config class is used as an available object with three static members. Its members are listed as
properties in order to abstract the location in which these values are stored. Currently, the three proper-
ties are ConnectionString, CurrentTheme, and PageTitle. The values for the three properties are
stored in the Web.config file, with a Config class to retrieve them when they are needed:

Imports Microsoft.VisualBasic

Public Class Config
‘’’ <summary>
‘’’ The connection string property that pulls from the web.config
‘’’ </summary>
Public Shared ReadOnly Property ConnectionString() As String

Get
Return ConfigurationManager.ConnectionStrings(“ConnectionString”)

.ConnectionString
End Get

123

Wrox Survey Engine

07_749516 ch04.qxp 2/10/06 9:13 PM Page 123

End Property
‘’’ <summary>
‘’’ The current theme of the website as defined in the web.config file
‘’’ </summary>
Public Shared ReadOnly Property CurrentTheme() As String

Get
Return ConfigurationManager.AppSettings(“CurrentTheme”).ToString()

End Get
End Property
‘’’ <summary>
‘’’ The HTML title value that each page displays, as defined here from the

web.config file
‘’’ </summary>
Public Shared ReadOnly Property PageTitle() As String

Get
Return ConfigurationManager.AppSettings(“PageTitle”).ToString()

End Get
End Property

End Class

As the preceding Config class displays, the properties ConnectionString, CurrentTheme, and
PageTitle are marked as Public Shared ReadOnly, which allows them to be accessed from anywhere
in the project by the config-dot notation. An example of this would be config.ConnectionString().
This would return the connection string from the Config class, without instantiating a Config class object
first.

SurveyDB.vb
This class is essentially the data layer for the application. It provides method calls in order to retrieve
information from the database and insert or update data within the database as well. This class serves
as the only file or object that will have access to the database files. In this way, you isolate data-specific
operations outside of the business logic layer. In so doing, you can see that it protects a developer from
writing duplicate data access code because it is organized in nature and located in the same place. This
also allows for the application to be logically separated into tiers, or layers, with the deliberate feasibility
of migrating and expanding the application onto separate servers at any point in time.

In line with the documented function call from the Survey class, the surveyDB class contains a Save
method, as displayed here:

Public Shared Function Save(ByVal mSurvey As Survey) As Integer

Using mConnection As New SqlConnection(Config.ConnectionString)

Dim mNewSurveyID As Integer
Dim mCommand As SqlCommand = New

SqlCommand(“sprocSurveyInsertUpdateItem”, mConnection)
mCommand.CommandType = CommandType.StoredProcedure
If mSurvey.ID > 0 Then

mCommand.Parameters.AddWithValue(“@id”, mSurvey.ID)
Else

mCommand.Parameters.AddWithValue(“@id”, DBNull.Value)
End If
mCommand.Parameters.AddWithValue(“@name”, mSurvey.Name)

124

Chapter 4

07_749516 ch04.qxp 2/10/06 9:13 PM Page 124

mCommand.Parameters.AddWithValue(“@description”, mSurvey.Description)
If mSurvey.IsCurrentSurvey = False Then

mCommand.Parameters.AddWithValue(“@iscurrentsurvey”, 0)
Else

mCommand.Parameters.AddWithValue(“@iscurrentsurvey”, 1)
End If

mConnection.Open()
mNewSurveyID = mCommand.ExecuteScalar()
mConnection.Close()

Return mNewSurveyID

End Using
End Function

This accepts a parameter of the type survey and accesses the members to save values into the database.

Another method of interest is the GetCurrentSurvey() method, returning a DataSet of the currently
selected survey in the system. The following is a code excerpt for this method:

‘’’ <summary>
‘’’ Retrieves the ‘current’ survey from the database
‘’’ </summary>
Public Shared Function GetCurrentSurvey() As DataSet

Dim dsSurveys As DataSet = New DataSet()
Try

Using mConnection As New SqlConnection(Config.ConnectionString)

Dim mCommand As SqlCommand = New SqlCommand
(“sprocSurveySelectSingleItemWhereCurrent”, mConnection)

mCommand.CommandType = CommandType.StoredProcedure
Dim myDataAdapter As SqlDataAdapter = New SqlDataAdapter()
myDataAdapter.SelectCommand = mCommand
myDataAdapter.Fill(dsSurveys)
mConnection.Close()
Return dsSurveys

End Using
Catch ex As Exception

‘When you call the “Throw” statement, you are raising the error to the
global.asax file, which will use the default error handling page to process/display
the custom error to the user

Throw
End Try

End Function

The preceding page logic performs the following steps:

1. Creates a new SqlCommand object, passing in the stored procedure name and the connection.

2. Sets the command type to be stored procedure.

3. Creates a new DataAdapter.

4. Assigns the SelectCommand of the DataAdapter to the newly created command.

125

Wrox Survey Engine

07_749516 ch04.qxp 2/10/06 9:13 PM Page 125

5. Calls the data adapter’s Fill method, passing in the DataSet to be filled with data.

6. Closes the connection.

7. Returns the DataSet to the caller.

It is worth mentioning that the CurrentSurvey web user control is the way that you currently display
a survey to the user. By extending the application, you could offer a list of surveys to choose from, and
provide dynamic page logic to pull the right survey for the user to complete.

WebForms
The WebForms are standard ASPX pages that contain the client-side graphical user interface of the applica-
tion. A few WebForms are of particular importance within the project, as noted in the following sections.

Default.aspx
The Default.aspx file is of course used as the first page that loads when the site is accessed. Within this
page is an instance of the user control currentsurvey.ascx, which provides visibility to the title and
description of the survey that is marked as current in the database. In this way, the web site viewers will
be able to see a survey they can click to complete and view the results.

Login.aspx
The Login page contains a Login control and a PasswordRecovery control. As mentioned in other
chapters, these are brand new to the .NET environment. This Login.aspx WebForm is located at the root
of the site and is not using a master page. The login controls contain HTML markup that defines the spe-
cific values for the destination page and text values of the controls:

<fieldset style=”height: 128px; width: 270px;”>
<asp:Login ID=”Login1” runat=”server” DestinationPageUrl= “~/Management/

Admin.aspx”>
</asp:Login>
</fieldset>

<fieldset style=”height: 118px; width: 270px;”>
<asp:PasswordRecovery ID=”PasswordRecovery1” runat=”server”>
</asp:PasswordRecovery>
</fieldset>

This HTML markup contains the control definitions for the Login and PasswordRecovery controls and
their properties.

TakeSurvey.aspx
The TakeSurvey.aspx WebForm is used to provide a survey from the database to complete with
inserts into the response table. The basic controls on the WebForm are an ObjectDataSource control,
SqlDataSource control, DataList control, and a set of fields within the DataList control that are
bound to the object properties. The following excerpt is the defined values of an ObjectDataSource
control as it is used to bind to values from the SelectMethod of its designated Survey business object.
The GetQuestions method is used to retrieve the survey table records in the form of a DataSet, for this
ObjectDataSource control to bind to:

126

Chapter 4

07_749516 ch04.qxp 2/10/06 9:13 PM Page 126

<asp:ObjectDataSource ID=”odsSurveyQuestions” runat=”server”
SelectMethod=”GetQuestions” TypeName=”Survey”>

<SelectParameters>
<asp:QueryStringParameter Name=”id” QueryStringField=”surveyID” Type=”Int32” />

</SelectParameters>
</asp:ObjectDataSource>

Just below this section in the form is the DataList control that this ObjectDataSource control binds
to. The fields and settings of this control exist solely within the HTML markup, as displayed here:

<asp:DataList ID=”DataList1” runat=”server” DataSourceID=”odsSurveyQuestions”>
<ItemTemplate>
<%=GetQuestionNum()%>. <%#Server.HtmlEncode(Eval(“Text”).ToString())%>

<input name=”Q<%#Eval(“ID”)%>” type=”radio” value=”A”>A.

<%#Server.HtmlEncode(Eval(“OptionA”).ToString())%></option>

<input name=”Q<%#Eval(“ID”)%>” type=”radio” value=”B”>B.

<%#Server.HtmlEncode(Eval(“OptionB”).ToString())%></option>

<input name=”Q<%#Eval(“ID”)%>” type=”radio” value=”C”>C.

<%#Server.HtmlEncode(Eval(“OptionC”).ToString())%></option>

<input name=”Q<%#Eval(“ID”)%>” type=”radio” value=”D”>D.

<%#Server.HtmlEncode(Eval(“OptionD”).ToString())%></option>

</ItemTemplate>
</asp:DataList>

This code specifies the object properties that the DataList binds to by the use of the <%#Eval(“ID”)%>
tags. This provides the connectivity and bindings to the object properties for the repeating data values in
the DataList control.

User Controls
Some specific user controls in the site assist with the navigation and content display for multiple pages.
Because web user controls promote a practice of creating and using reusable code, they were made to be
applicable within multiple pages of the site, depending on the nature of the controls.

header.ascx
The header user control is used to provide the top area of each page with meaningful content. If any-
thing needs to reside at or near the top of a web page, you would add it to the header control so it
would be visible through all of the pages.

The following code represents entire header.ascx source:

<%@ Control Language=”VB” AutoEventWireup=”false” CodeFile=”header.ascx.vb”
Inherits=”Controls_header” %>
<div style=”text-align: center”>

<table><tr>
<td></td>
<td><h1><% Response.Write(Page.Title) %></h1>
</td>

</tr></table>
</div>

127

Wrox Survey Engine

07_749516 ch04.qxp 2/10/06 9:13 PM Page 127

Notice that the <%Response.Write(Page.Title)%> tags are used to write back to the response stream
a title of the web site on the top of each page, which originated from the Web.config file.

footer.ascx
The footer user control is used as the bottom section of the site, for each page that uses the master
page. That is, the footer control, among others, is a referenced control within the master page. In this
way, it is propagated to all pages in the same exact manner.

The content of the footer control is displayed here:

<%@ Control Language=”VB” AutoEventWireup=”false” CodeFile=”footer.ascx.vb”
Inherits=”Controls_footer” %>
© 2005 Wrox Press
<asp:LoginStatus ID=”LoginStatus1” runat=”server”
LogoutAction=”RedirectToLoginPage”

LogoutPageUrl=”~/Login.aspx” />

This excerpt includes a reference to a LoginStatus control, brand new in the ASP.NET 2.0 control set.
The new control displays a changing link-button for providing login and logout functionality. When the
user is logged in to the site, the LoginStatus control displays a Logout link-button. Clicking the Logout
link-button logs users out of the site, and directs them to the Login page. When the user is logged out of
the site, the LoginStatus control displays a Login link-button. Clicking the Login link-button directs
users to the Login page, where they are able to log in.

navigation.ascx
The navigation user control is used to provide the reusable menu that each page includes within
itself in structure of the site. The menu itself is a brand new ASP.NET 2.0 control that binds to a
SiteMapDataSource control, also new in version 2.0 of the .NET Framework. The SiteMapDataSource
control is used to bind to an XML file, wherein the site files are listed as entries in the XML file.

The following excerpt is the HTML markup of the navigation control:

<%@ Control Language=”VB” AutoEventWireup=”false” CodeFile=”navigation.ascx.vb”
Inherits=”Controls_Navigation” %>
<asp:Menu ID=”Menu1” runat=”server” DataSourceID=”SiteMapDataSource1”
Orientation=”Horizontal”

StaticDisplayLevels=”2”></asp:Menu>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” runat=”server” />

The XML file of the SiteMapDataSource control is displayed here:

<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >

<siteMapNode url=”ContentFiles/default.aspx” title=”Home” description=””>
<siteMapNode url=”ContentFiles/about.aspx” title=”About” description=”” />
<siteMapNode url=”ContentFiles/contact.aspx” title=”Contact Us”

description=”” />
<siteMapNode url=”Management/admin.aspx” title=”Admin” description=”” />

</siteMapNode>
</siteMap>

128

Chapter 4

07_749516 ch04.qxp 2/10/06 9:13 PM Page 128

To add a page to the menu of the web site, you must simply copy and paste (with the necessary modifi-
cations) an entry of the preceding XML file. In this way, the master page (which contains the only refer-
ence to the navigation control) provides visibility to the menu of the site on each page.

surveyresults.ascx
The SurveyResults control displays the results of the survey that is specified via the surveyed QueryString
value. It is referenced within the SurveyResults.aspx WebForm page in the ContentFiles folder, and the
MgtSurveyResults.aspx page in the Management folder. The SurveyResults control provides visibility to
the percentage results of each of the survey questions of the specified survey.

The following HTML markup is from the SurveyResults.aspx page, displaying a SqlDataSource control.
Note the use of the QueryString surveyID as an entry in the <SelectParameters> section of the file:

<asp:SqlDataSource ID=”SqlSurveyResults” runat=”server” ConnectionString=
”<%$ ConnectionStrings:ConnectionString %>” SelectCommand=”SELECT * FROM
[viewAnswerPercentByQuestion] WHERE ([SurveyID] = @SurveyID)”>

<SelectParameters>
<asp:QueryStringParameter Name=”SurveyID” QueryStringField=”surveyID”

Type=”Int32” />
</SelectParameters>

</asp:SqlDataSource>

The next section of the file contains the data-bound DataList control, with all the applicable data-
bound fields listed within server-side tags, as shown here:

<asp:DataList ID=”DataList1” runat=”server” DataSourceID=”SqlSurveyResults”>
<ItemTemplate>

<%=GetQuestionNum()%>. <%#Server.HtmlEncode(Eval(“Text”).ToString())%>
<table border=”0” cellpadding=”1” cellspacing=”0”>
<tr><td>

<%#Server.HtmlEncode(Eval(“PctA”).ToString())%>%

</td><td>
<%#Server.HtmlEncode(Eval(“OptionA”).ToString())%>

</td></tr><tr><td>
<%#Server.HtmlEncode(Eval(“PctB”).ToString())%>%

</td><td>

<%#Server.HtmlEncode(Eval(“OptionB”).ToString())%>
</td></tr><tr><td>

<%#Server.HtmlEncode(Eval(“PctC”).ToString())%>%

</td><td>
<%#Server.HtmlEncode(Eval(“OptionC”).ToString())%>

</td></tr><tr><td>
<%#Server.HtmlEncode(Eval(“PctD”).ToString())%>%

</td><td>

<%#Server.HtmlEncode(Eval(“OptionD”).ToString())%>
</td></tr></table>

</ItemTemplate>
</asp:DataList>

129

Wrox Survey Engine

07_749516 ch04.qxp 2/10/06 9:13 PM Page 129

The preceding HTML markup provides data-bound controls that show you which fields are being dis-
played to the browser, all within a set of HTML tables and fields.

currentsurvey.ascx
The CurrentSurvey web user control is used to provide the name and description of the survey listed in
the Survey table with the field IsCurrentSurvey field set to 1, rather than 0. The 1 value indicates that
this record represents the current or selected survey to be displayed to the user at run time. That is, in a
typical web site, only one survey could be exposed to the users of the site at a time. In such a case, the
administrator may want to select one at a time by allowing one of the surveys to have a current value.

The top portion of the CurrentSurvey control is as follows:

<%@ Control Language=”VB” AutoEventWireup=”false” CodeFile=”currentsurvey
.ascx.vb” Inherits=”Controls_currentsurvey” %>

<asp:ObjectDataSource ID=”odsCurrentSurvey” runat=”server”
SelectMethod=”GetCurrentSurvey” TypeName=”Survey”></asp:ObjectDataSource>

Notice in this excerpt the use of ObjectDataSource control with a SelectMethod of GetCurrentSurvey
for the retrieval of the one record in the Survey table with an IsCurrentSurvey value of 1. The next sec-
tion of the currentsurvey control, shown in the following code, displays the use of the DataList control
as it binds to the ObjectDataSource control’s properties, providing the name and description of the cur-
rent survey in the database:

<asp:DataList ID=”DataList1” runat=”server” DataSourceID=”odsCurrentSurvey”>
<ItemTemplate>

<fieldset class=”CurrentSurveySection”>
<a href=”TakeSurvey.aspx?surveyID=<%# Eval(“ID”) %>”>
<%#Server.HtmlEncode(Eval(“Name”).ToString())%>

<%#Server.HtmlEncode(Eval(“Description”).ToString())%>

<a href=”TakeSurvey.aspx?surveyID=<%# Eval(“ID”) %>”>...take the

survey!
</fieldset>

</ItemTemplate>
</asp:DataList>

As mentioned earlier in this chapter, there are other ways of displaying surveys, but this provides an
easy means by which to present one survey at a time to the user through a small area of HTML real
estate. A web site could squeeze this user control into just about any section of a site, so it lends itself
well to the design.

The next section explains in detail how to install and configure the source files of the web site and how
to deploy the site to a server in a production environment.

Setting up the Project
The time has come to learn how to install this Wrox Survey Engine and see for yourself how quickly you
can be up and running with a working survey application. The two ways you can install the web site are
as a hosted web site application and as a source codebase for editing in Visual Studio 2005 or VWD.

130

Chapter 4

07_749516 ch04.qxp 2/10/06 9:13 PM Page 130

Hosted Web Site Installation
If you want to install the Wrox Survey Engine as a hosted web site on a computer or server, without cus-
tomizations or enhancements at all, follow these steps (which assume you have already installed the
.NET Framework 2.0):

1. Open the folder Chapter 04 – Wrox Survey Engine\Installation Files\ from the CD-ROM that
came with this book and double-click the setup.exe file.

2. This process installs the files properly for hosting the web site locally to C:\wwwRoot\
SurveyEngine as a file-based web site application. Click Next to install the application, and
close the installation program when it completes.

3. Then, browse to your local web site (for example, http://localhost/SurveyEngine). The
Wrox Survey Engine application should appear. To test the administration section, click the
Admin link and log in with a username of SuperAdmin and a password of password#.

4. Finally, if you need to expose the site to the outside world, be sure to configure the public IP
address to the IIS web site application. The details of this IIS configuration and its implications
are outside the scope of this book, but the Wrox Survey Engine is easily configurable as a public
web site with a brief tutorial on web site hosting.

Local Developer Installation
If you would like to open the project in Visual Studio or VWD, perform the following steps (assuming
the .NET Framework 2.0 is installed, along with either Visual Studio or VWD):

1. Create a new web site in Visual Web Developer or Visual Studio 2005.

2. Open the folder Chapter 04 – Wrox Survey Engine Installer\ from the CD-ROM that came with
this book and extract the contents of the file PhotoAlbumSource.zip to a folder on your hard drive.

3. Open a Windows Explorer and browse to the folder that contains the unpacked files. Next,
arrange both Visual Web Developer and the Windows Explorer in such a way that both are
visible at the same time.

4. In the Windows Explorer, select all of the folders and files within the codebase and drag the
selected folders and files from the explorer window into the Solution Explorer in Visual Web
Developer. If you’re prompted if to overwrite files, click Yes. You should end up with a Solution
Explorer that contains all of the necessary files for the project to run properly.

5. In the Web.config file, modify the EmailTo and EmailFrom values in the appSettings section
(see the following code) to reflect the administration e-mail accounts to be used for sending and
receiving e-mail, should you decide to use this feature. Also, the PageTitle property is change-
able here, which applies to the window title bar of each page in the site.

<appSettings>
<add key=”EmailFrom” value=”admin@mysurveyengine.com” />
<add key=”EmailTo” value=”admin@mysurveyengine.Com” />
<add key=”PageTitle” value=”Wrox Survey Engine” />

6. Also in the Web.config file, you can modify the smtp value in the mailSettings section (see
following code) to reflect the e-mail SMTP outbound mail server name to be used for sending
and receiving e-mail, should you decide to use this feature.

131

Wrox Survey Engine

07_749516 ch04.qxp 2/10/06 9:13 PM Page 131

<system.net>
<mailSettings>
<smtp deliveryMethod=”Network”>
<network host=”smtp.YourMailServerName.com” port=”25” />

</smtp>
</mailSettings>

</system.net>
<system.web>

7. Right-click the Default.aspx WebForm in the ContentFiles folder and select the Set as Start Page
option. Press F5 to run the application in the development environment.

Now that you’ve set up the project, head to www.wrox.com, find this book’s download page, and check
out some possible modifications to the Wrox Survey Engine.

Summary
In this chapter you learned about some of the more exciting controls and tools in the ASP.NET 2.0 frame-
work, such as the Login, LoginStatus, PasswordRetrieval, SiteMap, master pages, SqlDataSource,
ObjectDataSource, SiteMapDataSource, GridView, DataList, and Menu controls. The flow of the
chapter was visually rich, providing plenty of examples for you to absorb the logical flow of the applica-
tion. You learned how each of these new and exciting features provides the rapid development everyone
has been waiting for in Visual Studio.

The focus of the chapter was the understanding of how surveys are completed and retrieved, with some
emphasis on the layered application approach. Some expanded and informative areas of the reading
were related to the ObjectDataSource control versus the SqlDataSource control. The benefits and
risks were outlined for both, and an argument was formed in favor of the ObjectDataSource control.

132

Chapter 4

07_749516 ch04.qxp 2/10/06 9:13 PM Page 132

5
Wrox CMS

Many of today’s web sites are database-driven, which means they get their content from a data-
base and not from static HTML files alone. Although this gives you great possibilities in the con-
tent you can present, it also brings a problem in updating that content. With static HTML sites you
can design and create your files offline, and when you’re ready you simply use FTP or other net-
work communication tools to get your files to the production server. However, with a site based
on a database, this won’t work. Because the site must remain up and running, you often cannot
simply overwrite the old database with new information. Also, because the site may be collecting
run-time information (such as page views, user logins, and so forth) you could lose that informa-
tion when you upload a new database with fresh content.

The most common way to solve this problem is to use an online Content Management System (CMS).
Such a system allows you to log in to your site, and then manage the content right on the location
where it’s stored and used: the web server.

In this chapter you learn how to build a generic CMS that allows you to manage content and the
categories that this content is stored in. You can use the web site and CMS to publish information
for a wide variety of scenarios. You can use it to publish information about your local soccer club,
your company’s press releases, or any other topic you want to share with the world. The demo
web site presented in this chapter uses the CMS to manage information about programming-
related topics, including ASP.NET 2.0 and Visual Web Developer. The chapter begins with a quick
tour of the web site and the CMS section. You see how to create new categories that will appear as
menu items in the web site and how to enter the actual content in the database.

The section “Design of the Wrox CMS” explains how the CMS is designed, and what pages and
classes are involved, and the section “Code and Code Explanation” takes a thorough look at the
files and code in the site and explains how it all works.

Using the Wrox CMS
The site demonstrated in this chapter has two important sections: the public front end and the
(protected) content management system. The public front end displays what are called content
items in this chapter; a collection of news, articles, and frequently asked questions. These content

08_749516 ch05.qxp 2/10/06 9:14 PM Page 133

items can be managed with the content management system that is part of the web site. This chapter
focuses mainly on the latter section, but it also shows you how the information from the CMS is dis-
played on the public side.

Viewing Content on the Site
If the Wrox CMS web site has been installed successfully (refer to the section “Setting up the Wrox CMS”
later in this chapter for more details) you can view the site by browsing to http://localhost/Cms.
You’ll see the screen shown in Figure 5-1.

Figure 5-1

The main menu, with the big tabs at the top of the screen, contains both static and dynamic menu items.
The Home, Admin, and Login items are fixed elements. The Home button always brings you back to the
homepage and the Login button allows you to log in. The Admin button provides access to the Content
Management System, referred to as the Management section in this chapter. The other three, referred to
as content types, come from the database. Once you click a content type, such as Articles, you see a sub-
menu appear, as depicted in Figure 5-2.

Figure 5-2

The sub-menu displays the categories that are available within the chosen content type. When you click
a sub-menu, such as Visual Web Developer, you see a list with content items (see Figure 5-3) that are
assigned to that category.

134

Chapter 5

08_749516 ch05.qxp 2/10/06 9:14 PM Page 134

Figure 5-3

When you click the “Read more” link below one of the content items, a detail page appears that shows
you the full version of the content item.

Managing Content with the CMS
To manage the content in the system and the various content types and categories, you need to log in
first. If you installed the application using the supplied installer or through the manual process — as
described in the section “Setting up the Wrox CMS” later in the chapter — you can log in with a user-
name of Administrator and the password Admin123# (note that the password is case-sensitive).

Once you’re logged in, you see the CMS main menu appear with links to manage content types, cate-
gories, and content. Managing content types and categories is pretty straightforward. You can create
new and update existing items. You can also reassign a category to a different content type by editing
the category and choosing a new content type from the drop-down.

You can manage the content of the site by clicking the Manage Content item on the left menu that you
can see in Figure 5-4. You then get a list with all the available content, filtered by the content type. To
choose a different type, select the item from the drop-down list. To change a content item, click the Edit
button in the list. If you click the Create New button you’re taken to the AddEditContent.aspx page
(shown in Figure 5-4) that is used to add new and change existing content items.

In addition to the Title, Intro Text, and Full Text of the content item, you can also specify the content type
and the category. As soon as you choose a new content type, the page refreshes and the category drop-
down is updated to display the categories that belong to the chosen content type. An HTML editor
called the FCKeditor was used for the Intro Text and Full Text fields. Use of this editor is explained later
in the chapter.

If you leave the Visible checkbox unchecked, the item will no longer show up on the web site. It won’t be
deleted from the database, however, so you can always reactivate the item later.

135

Wrox CMS

08_749516 ch05.qxp 2/10/06 9:14 PM Page 135

Figure 5-4

Managing the content and various categories in this web-based CMS is pretty easy to do. Fortunately,
the design and implementation of the CMS are pretty straightforward as well. In the next section you
learn about the design of the application. The section describes the business layer and data access classes
and shows you the design of the database and the stored procedures used to get data in and out of the
database.

Design of the Wrox CMS
Most of the pages in the Wrox CMS rely on SqlDataSource controls to get the data in and out of the
database. These new data source controls, in combination with the GridView and FormView, allow you
to create database-driven pages in no time, with very little to no code at all. However, these controls
suffer from a few problems. First of all, they are best suited for rather simple scenarios. For example,
the page in the Management section that allows you to create or change categories is well suited for the
SqlDataSource in combination with a GridView (for the list of categories) and a FormView (to insert
new items) because the underlying data structure is quite simple. However, with more complex pages,
like the AddEditContent.aspx page that has two drop-downs that are bound to each other, things become
a bit more difficult. To make the SqlDataSource and FormView controls work in these scenarios you

136

Chapter 5

08_749516 ch05.qxp 2/10/06 9:14 PM Page 136

have to jump through all kinds of hoops, resulting in bloated markup and far from straightforward code
in the code-behind of your pages.

The second problem with the SqlDataSource controls is the fact that they usually embed SQL state-
ments directly in the markup of your pages. This breaks about every rule of good multi-tiered design
because this forces you to update possibly many pages in your site whenever you make even a little
change to the structure of your database.

Despite these disadvantages, using the SqlDataSource control can be a great way to rapidly develop
relatively small web sites that require little to no changes in the database structure. To show you how
they work and how to use them, they are used for most of the data access in the Wrox CMS. The only
exception is the AddEditContent.aspx page. Instead of working with a SqlDataSource control, the
Wrox CMS uses a few custom classes and methods to get information from and in the database.

To minimize the impact of the SQL statements all over the page, stored procedures are used in all of the
SqlDataSource controls in the Wrox CMS. Instead of storing the entire INSERT or UPDATE statement in
the ASPX portion of the page, you now only store the name of a procedure in the database. Whenever a
change is made to either the database structure or the queries, all that needs to be updated are a few
stored procedures.

In later chapters — including Chapter 9 and Chapter 12 — you use ObjectDataSource controls to
enforce a three-tiered architecture.

The decision to use the SqlDataSource controls in your pages results in very slim business and data
access layers. The next section discusses the only class in the business layer. The section following that
describes the database and the classes in the data access layer.

The Business Layer
As stated earlier, no SqlDataSource controls are used to create and update content items in the Content
table. The two drop-downs with the content types and categories that are related to each other result in
bloated code that is very hard to understand and maintain. Instead, a simple, straightforward class —
called Content— was designed that represents a content item in the database. The class exposes a num-
ber of properties like its Title, IntroText, and its CategoryId and has two methods to get the content
item in and out of the database. You can find the definition of the Content class in the file Content.vb in
the App_Code\BusinessLogic folder of the web site. Figure 5-5 shows the design of the Content class.

Figure 5-5

137

Wrox CMS

08_749516 ch05.qxp 2/10/06 9:14 PM Page 137

The following table lists each of the seven public properties the class exposes:

Property Data Type Description

BodyText String The BodyText property holds the full text for the
content item and is displayed on the detail page only.

CategoryId Integer Indicates to which category the content item belongs.

ContentTypeId Integer Indicates to which content type the content item belongs.

Id Integer This is the unique ID of the content item and is
assigned by the database automatically whenever a
new item is inserted.

IntroText String This property contains the introduction text for the
content item. This intro text is displayed, possibly with
a different formatting, on the content list page and at
the top of the content detail page.

Title String This is the title of the content item as it appears on the
content list and detail pages.

Visible Boolean Determines whether the item is visible in the public
area of the web site.

In addition to these seven properties, the Content class has a total of four methods: the two construc-
tors, a Save method, and a GetItem method, each of which is discussed in the following table:

Method Return Type Description

Public Sub n/a The default constructor for the Content class. Initializes
New() a new instance with all of its properties set to their

default values.

Public Sub n/a This overloaded constructor initializes a new instance
New (ByVal id of the Content class with all of its properties set to
As Integer) their default values except for the Id that is filled with

the ID passed to constructor. This overload is used to
re-create existing items when updating them in the
management section.

Public Sub n/a Saves a new or an existing content item in the database
Save() by calling the Save method in the ContentDB class,

which is discussed later.

Public Shared An instance of Gets an existing content item from the database by
Function the Content calling GetItem in the ContentDB class.
GetItem class or
(ByVal id As Nothing when
Integer) As the item could
Content not be found.

138

Chapter 5

08_749516 ch05.qxp 2/10/06 9:14 PM Page 138

The Data Access Layer
Because most of the pages in the site use SqlDataSource controls for their data access, you need only
one class in the data access layer: the ContentDB class, shown in Figure 5-6, which is responsible for
retrieving and saving a single content item from the database.

Figure 5-6

Because the ContentDB class exposes only shared members, it has no public constructor. It also has no
public properties, but it does have two public methods, outlined in the following table:

Method Return Type Description

Public Shared Sub Save n/a Saves a new or an existing
(ByVal contentItem As content item in the database.
Content)

Public Shared Function An instance of the Content Gets an existing content item
GetItem (ByVal id As class or Nothing when the from the database.
Integer) As Content item could not be found.

In addition to this single class, the data access layer contains the database that is discussed next.

The Data Model
The database for the Wrox CMS has three tables and a number of stored procedures that are responsible
for getting the data in and out of those tables. Figure 5-7 shows the three tables and their relations to
each other.

Figure 5-7
139

Wrox CMS

08_749516 ch05.qxp 2/10/06 9:14 PM Page 139

The Content table is the main entity in the database, because it stores the content that is displayed on the
web site. The following table lists all of the Content table’s columns and their usage:

Column Name Data Type Description

Id int The unique ID of each content item. This ID is
generated automatically by the database each time a
new record is inserted.

Title nvarchar(100) The title of the content item. The title is displayed on
the content list and detail pages.

IntroText nvarchar(MAX) Used to store the introduction text of the content item
that is displayed on the content list page and above
the full text on the details page.

BodyText nvarchar(MAX) The full text for the article, not including the intro-
duction text. This text is displayed on the content
detail page, right below the intro text.

ContentTypeId int The type of content to which this item belongs.

CategoryId int The ID of the category to which the item belongs.

CreateDateTime datetime The date and the time the item was inserted.

UpdateDateTime datetime The date and the time the item was last updated.

Visible bit Indicates whether the item is visible in the public
section of the site.

Each content item is linked to the ContentType table with its ContentTypeId. This relation allows you to
find a list of all content items within a certain content type without specifying a category first. In addi-
tion to its internal ID and its Description, the ContentType table also has SortOrder and Visible columns.
The SortOrder column allows you to control the order of the items in the main menu, and the Visible col-
umn allows you to hide the entire content item from the menu.

A content item is also linked to a category in the Category table by its CategoryId. The Category table is
similar to the ContentType table, but it has an additional ContentTypeId that enables you to link cate-
gories to content types.

To simplify the maintenance of the site, the SQL statements have been moved to separate stored proce-
dures. That means you won’t find a single SELECT or UPDATE or other SQL statement anywhere in the
code. If you want to see or change the stored procedures in the database, look under the Stored
Procedures node of the database on the Database Explorer (which you can open with Ctrl+Alt+s) in
Visual Web Developer. Each of the relevant stored procedures is discussed as part of the page or pages
that use them later in this chapter.

Helper Class
The final class located in the special App_Code folder is the AppConfiguration class. This class belongs
more to the web site than to the business or data access layer, so it has been put in the App_Code folder

140

Chapter 5

08_749516 ch05.qxp 2/10/06 9:14 PM Page 140

directly. This isn’t a requirement, so you could move it to one of the existing folders, or create an entirely
new folder such as Configuration or Helpers and place it there. The class is called AppConfiguration
and not Configuration, for example, to avoid a naming conflict with the existing ASP.NET System
.Configuration namespace. The AppConfiguration class exposes a single shared property called
ConnectionString, which is essentially a wrapper around the ConnectionString held in the Web
.config file. The pages in the site that use SqlDataSource controls use their own binding syntax to get
their ConnectionString property from the Web.config directly. However, the two methods in the data
access layer use the AppConfiguration class to retrieve information about the connection. Instead of
writing code that directly accesses the Web.config file, these methods can now access this property. You
see this property in use in the next section when the code in the business, data access, and presentation
layers is discussed.

Code and Code Explanation
This section walks you through each of the important pages in the Wrox CMS web site. It starts off by
looking at a few files located in the root of the site that are used by the other pages. Then you see in great
detail the files in the Management folder that allow you to manage the content in the database.

Finally, this section closes with an examination of the two files that are responsible for displaying the
content in the public section of the site.

Root Files
The root of the CMS web site contains two master files, a config file, a login page, the default page, and
two files that are used to display the content in the database. This section discusses all of these files,
except for the last two, which are dealt with after the Management folder has been discussed.

Web.config
This global configuration file contains one appSetting key and one connectionString. The
appSetting key is used by the FCKeditor, the inline HTML editor discussed later. The connection
string is used by the various pages and data access classes in the application.

Under the <system.web> node, you’ll find two configuration sections that configure the Membership and
Role providers. The CMS uses these providers to enable users of the CMS to log in to access the protected
Management folder and its contents. Because the site uses a custom database, and not the default
aspnetdb.mdf as defined in the machine.config that applies to the entire server, you need to configure the
application to use the custom database instead. Both the <membership> and the <roleManager> nodes
are very similar to the ones you find in machine.config. In fact, the only changes made to the settings
copied from the global machine.config are the name and connectionStringName attributes of the
<providers> node that instructs ASP.NET to use the custom connection string and database instead:

<providers>
<add
name=”SqlProvider”
type=”System.Web.Security.SqlRoleProvider”
connectionStringName=”Cms” />

</providers>

141

Wrox CMS

08_749516 ch05.qxp 2/10/06 9:14 PM Page 141

Right under the provider settings, you’ll find these settings:

<authentication mode=”Forms”>
<forms loginUrl=”~/Login.aspx” />

</authentication>

<authorization>
<allow users=”*”/>

</authorization>

<pages theme=”Cms”>

The first element, <authentication>, tells .NET to use Forms Authentication. Whenever you’re trying
to request a protected page as an anonymous user, you’re taken to the Login.aspx page located in the
root of the site that allows you to log on. The second node, <authorization>, allows access to all pages
in the site to all users. The Management folder is blocked for users that are not in the Administrator role
with a <location> tag that you see next.

The <pages> node tells ASP.NET to use the theme defined in the App_Themes folder. The site features a
very simple theme, with a single .skin file that defines the looks of GridView controls used in the site.
The GridView.skin file contains a few style definitions with CssClass attributes that point to classes
defined in the Styles.css file in the CSS folder.

The final section in the Web.config file you need to look at is the <location> tag at the bottom of the file:

<location path=”Management”>
<system.web>
<authorization>
<allow roles=”Administrator” />
<deny users=”*”/>

</authorization>
</system.web>

</location>

This code instructs ASP.NET to block access to all users that are not in the Administrator role. When you
try to access one of those pages in that folder, you’re taken to Login.aspx instead.

The remainder of the elements in the Web.config file is placed there by Visual Web Developer when you
create a new ASP.NET 2.0 web site.

SiteMaster.master and AdminMaster.master
These two master files determine the look and feel of all the pages in the site. The SiteMaster.master
file is used for the public pages in the site, whereas AdminMaster.master defines the look for the pages
in the Management folder. The two files have a lot in common; the only difference is that inside the
AdminMaster.master file there is a new HTML table and a user control that displays the sub-menu for the
Management section. Although ASP.NET 2.0 allows you to use nested master files, the CMS web site
doesn’t use that feature. With a nested template, you lose design-time capabilities in Visual Web Developer,
which can be a real productivity killer because you’ll need to hand-code the pages yourself. So, instead
SiteMaster.master was created first and then its contents were copied to the AdminMaster.master file.

142

Chapter 5

08_749516 ch05.qxp 2/10/06 9:14 PM Page 142

In addition to some regular HTML tags, the SiteMaster.master contains a user control called SiteMenu
that displays the main and sub-menus. The SiteMenu control that you find in the Controls folder con-
tains two Repeater controls for the two menus. Each menu item in the main and sub-menus links to the
ContentList page and passes it the ID of the selected content type and, if present, of the category through
the query string. This allows that page, and any user controls in it, to see which content type and cate-
gory is currently being displayed. The SiteMenu control also contains two SqlDataSource controls that
get their data from stored procedures in the database. Take a look at the data source for the sub-menu
that displays the categories to see how this works:

<asp:SqlDataSource ID=”sdsSubMenu” runat=”server”
ConnectionString=”<%$ ConnectionStrings:Cms %>”

ProviderName=”System.Data.SqlClient” SelectCommand=”sprocCategorySelectlist”
SelectCommandType=”StoredProcedure”

>
... Select Parameter is shown later

</asp:SqlDataSource>

The markup for this control contains a few important bits of information. First of all, there is the
ConnectionString attribute. To assign the proper connection string at run time, a new form of data
binding is used. The new <%$ %> expression syntax is used to bind attributes to connection strings,
resources, and application settings in the Web.config file. In this case, a connection string with the name
Cms is retrieved from the application’s configuration file.

The next important pieces are the SelectCommand and SelectCommandType attributes. These tell
the .NET Framework to run the stored procedure called sprocCategorySelectlist in the database
defined by the connection string.

The stored procedure is pretty straightforward: it requests all the categories that belong to a certain con-
tent type:

CREATE PROCEDURE sprocCategorySelectlist

@contentTypeId int

AS

SELECT
Category.Id,
Category.Description,
Category.ContentTypeId,
ContentType.Description AS ContentTypeDescription,
Category.SortOrder

FROM
Category INNER JOIN
ContentType ON Category.ContentTypeId = ContentType.Id

WHERE
(Category.ContentTypeId = @contentTypeId)
AND Category.Visible = 1

ORDER BY
SortOrder

RETURN

143

Wrox CMS

08_749516 ch05.qxp 2/10/06 9:14 PM Page 143

In addition to the fields of the Category table, the description of the content type is retrieved as well,
aliased as ContentTypeDescription. This description is used in the Management section of the site, to
show the name of the content type that the category belongs to. The stored procedure expects the ID of
the content type as a parameter. In the code for the SqlDataSource that parameter is set up as follows:

<SelectParameters>
<asp:QueryStringParameter Name=”contentTypeId”

QueryStringField=”ContentTypeId” Type=”Int32” />
</SelectParameters>

With this code, a single Parameter object is defined that gets its value from a QueryStringField called
ContentTypeId. When the SqlDataSource is about to retrieve the data from the database, it gets the
value from the query string and then stores it in this parameter so it gets passed to the stored procedure.

By using the query string as a parameter, the SqlDataSource control will always retrieve the categories
that belong to the currently requested content type.

The other data source control, which gets the items for the main menu, works the same way. However,
because this control always needs to return all content types, it does not have any select parameters.

When you view a page that is using the SiteMenu control, you’ll see something like Figure 5-8.

Figure 5-8

All the menu items between Home and Admin come from the ContentType table, whereas the sub-
menus come from the Categories table. You can also see that in the link for the sub-menu both the
ContentTypeId and the CategoryId are passed to the ContentList page. The final thing you should
notice in Figure 5-8 is that one main menu and one sub-menu (Articles and Visual Web Developer)
appear as selected by using a different color or font type. This is done by some code in the Load event in
the code-behind file of the user control.

When the two Repeater controls for the menus get their data from the SqlDataSource controls they
fire their ItemDataBound event for each item added to the repeater. This event is a great place to prese-
lect the menu items because you have access to both the query string holding the ID of the chosen con-
tent type and category and to the item that is about to be displayed. The following code shows how a
sub-menu gets a bold typeface when it is selected:

144

Chapter 5

08_749516 ch05.qxp 2/10/06 9:14 PM Page 144

Protected Sub repSubMenu_ItemDataBound(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.RepeaterItemEventArgs) _
Handles repSubMenu.ItemDataBound

If e.Item.ItemType = ListItemType.Item Or _
e.Item.ItemType = ListItemType.AlternatingItem Then

Dim myDataRowView As DataRowView = DirectCast(e.Item.DataItem, DataRowView)

If Convert.ToInt32(myDataRowView(“Id”)) = _
Convert.ToInt32(Request.QueryString.Get(“CategoryId”)) Then

Dim lnkSubmenu As HyperLink = _
DirectCast(e.Item.FindControl(“lnkSubmenu”), HyperLink)

lnkSubmenu.CssClass = “Selected”
End If

End If
End Sub

This code examines the ItemType of the item that is currently being data-bound. When an Item or
Alternating item is created, the code retrieves the item’s DataItem, which in this case holds a
DataRowView. Then DirectCast is used to cast the generic DataItem object to a DataRowView. Using
DirectCast is very similar to CType but it performs a bit faster. The downside of DirectCast is that it
can only cast objects of exactly the same type. You can’t use it to cast an object to another type higher or
deeper in the inheritance hierarchy. In this case, however, that is no problem because the DataItem is a
DataRowView so you can safely use DirectCast.

Once you have the DataRowView object, you can retrieve its ID column that holds the ID for the cate-
gory you’re adding to the Repeater. If the ID of that category matches the ID of the category you’re cur-
rently displaying (determined by looking at the CategoryId query string), the code gets a reference to
the hyperlink in the menu called lnkSubmenu, again using DirectCast. And finally, the hyperlink’s
CssClass is set to Selected. The behavior for the Selected class (a bold font in this case) is defined in
the Core.css file:

#SubMenu a.Selected
{
font-weight: bold;

}

This code applies a bold font to all <a> tags that fall within the #SubMenu div tag and that have a
Selected class applied which happens to be the selected sub-menu item.

The menu items Home, Admin, and Login are not database-driven, so you cannot preselect them
in an ItemDataBound event. Instead, in Page_Load of the SiteMenu control you examine the
AppRelativeCurrentExecutionFilePath property of the HttpRequest class. By using string com-
paring you can see if you need to preselect one of the static menu items:

If Request.AppRelativeCurrentExecutionFilePath.ToLower() = “~/default.aspx” Then
liHome.Attributes(“class”) = “Selected”

End If

This code applies the class Selected to the static Home menu item when the currently requested page
is ~/default.aspx, which is the homepage for the CMS web site. The same principle is applied to prese-
lect the other two menu items.

145

Wrox CMS

08_749516 ch05.qxp 2/10/06 9:14 PM Page 145

Login.aspx
This page allows you to log in to the site and is shown automatically whenever you try to access one of
the pages in the Management folder as an unauthenticated user. The page takes full advantage of the
ASP.NET 2.0 security framework offered by the Membership and Role providers. All that this page
requires is one simple <asp:Login> control like this:

<asp:Login ID=”Login1” runat=”server” />

Although the control doesn’t look too good with only this markup, it is still fully functional. The pur-
poses of this CMS don’t require any visual customization, but if you want you can apply a host of
behavior and appearance changes to the control through the Visual Web Developer IDE.

The final two pages located in the root, ContentList.aspx and ContentDetail.aspx, are discussed after the
Management folder that’s coming up next.

The Management Folder
All the files in the Management folder are used for maintaining the content types, categories, and the
actual content that gets displayed in the public area of the web site. The folder contains five pages: the
default homepage of the management section, one page to manage content types, one to manage cate-
gories, and two pages to manage the content items. The homepage does nothing more than display sim-
ple static text and the Admin menu. The other pages are much more interesting so they are explained in
more detail. Because managing content types is very similar to managing categories, the ContentType
page is skipped in favor of the Categories page, because that’s the more comprehensive of the two. All
of the concepts used in the Categories page are used in the ContentType page as well.

Managing Categories
As you have seen before, the categories are displayed as text menu items whenever you choose a specific
content type. Each category is tied to a specific content type by its ContentTypeId. To control the order
in which the items appear on the sub-menu, a Category also has a SortOrder column.

To allow you to manage existing categories and create new ones all in the same page, Categories.aspx is
divided in two sections using <asp:Panel> controls. The first panel, called pnlList, holds a GridView
that displays the existing categories. A drop-down above the GridView allows you to filter categories
that belong to a specific content type. The second panel, pnlNew, is used to insert new categories. The
panel holds a FormView control that is bound to a SqlDataSource to handle the insertion in the data-
base. At any time, only one of the two views is visible to make it easier to focus on the task at hand. You
get a deeper look at the pnlList panel first, and then you see how you can insert new categories with
the controls in the second panel.

Besides a few static controls for informational and error messages, pnlList holds two important con-
trols: a drop-down called lstContentTypes and a GridView called gvCategories. The drop-down
control lists the available content types in the site. The GridView, in turn, displays the categories that
belong to the content type selected in the drop-down control.

When the page loads, the drop-down gets its data from a SqlDataSource called sdsContentTypes.
Both the drop-down and the data source have very simple markup:

146

Chapter 5

08_749516 ch05.qxp 2/10/06 9:14 PM Page 146

<asp:DropDownList ID=”lstContentTypes” runat=”server”
DataSourceID=”sdsContentTypes”
DataTextField=”Description” DataValueField=”Id” AutoPostBack=”true”>

</asp:DropDownList>

The DataSourceID of the control is set to the SqlDataSource so the control knows where to get its
data. The DataTextField and DataValueField are then set to the two columns that are available in
the DataSet that is returned by the SqlDataSource. AutoPostBack is set to True to ensure that the
page will reload whenever you choose a new content type from the drop-down list.

The SqlDataSource gets its data by calling a stored procedure called sprocContentTypeSelectList.
This is done with the following markup:

<asp:SqlDataSource ID=”sdsContentTypes” runat=”server”
ConnectionString=”<%$ ConnectionStrings:Cms %>”
SelectCommand=”sprocContentTypeSelectList”
SelectCommandType=”StoredProcedure”>

</asp:SqlDataSource>

This markup is very similar to the code you saw earlier used to retrieve the menu items from the
database. The stored procedure used by the data source is very simple; all that it does is request a list
with the available content types:

CREATE PROCEDURE sprocContentTypeSelectList

AS

SELECT
Id, Description, SortOrder

FROM
ContentType

WHERE
Visible = 1

ORDER BY
SortOrder

With the drop-down list in place, the next thing to look at is the GridView. Just as with the drop-down,
the GridView is bound to a SqlDataSource by setting its DataSourceID property:

<asp:GridView ID=”gvCategories” runat=”server” AutoGenerateColumns=”False”
DataKeyNames=”Id” DataSourceID=”sdsCategories” AllowPaging=”True”
AllowSorting=”True”>

... control’s inner content goes here
</asp:GridView>

The DataKeyNames property is set to Id, which is the ID of the category in the database to tell the
GridView what the primary key of table is. In addition, AllowPaging and AllowSorting are set to
True. This way, the data in the GridView gets easier to manage because you can now sort specific
columns and see the data displayed in smaller pages instead of having to scroll through a long list
with items.

147

Wrox CMS

08_749516 ch05.qxp 2/10/06 9:14 PM Page 147

To understand what data needs to be displayed in the GridView, take a look at the page as it is dis-
played in the Management section (see Figure 5-9).

Figure 5-9

Above the GridView you see the drop-down discussed earlier. In the GridView you see columns that
display the category’s ID, its own description, the description of the content type it belongs to, the sort
order, and two buttons to edit and delete the categories. When you click the Edit button, the GridView
jumps in edit mode and displays editable controls for the description, content type, and sort order, as
shown in Figure 5-10.

Figure 5-10

To display the items in both read-only and edit mode, the GridView contains a mix of BoundField,
TemplateField, and CommandField controls. It’s a bit too much code to repeat all of it here, but a few
of them are examined in more detail. First, take a look at the ID column:

<asp:BoundField DataField=”Id” HeaderText=”ID”
ReadOnly=”True” SortExpression=”Id” />

The field is bound to the Id column in the database by setting the DataField attribute. The ReadOnly
attribute is set to True to ensure the column is not editable when the GridView is in edit mode. Because
the database automatically assigns new IDs to the category, there is no point in allowing the user to
change the value. By setting SortExpression to Id you accomplish two things. First, the HeaderText
for the column changes from a simple label to a clickable hyperlink. Secondly, when the column is
clicked, the data is sorted on the column specified by the SortExpression attribute.

For the description column a TemplateField is used that displays a simple label in read-only mode and
a text box when the item is edited. To ensure that the field is not left empty, the text box is hooked up to
a RequiredFieldValidator control.

The column for the content type is a bit more complex, because it displays a drop-down control in edit
mode. Fortunately, the code you require for such a column is still pretty easy:

148

Chapter 5

08_749516 ch05.qxp 2/10/06 9:14 PM Page 148

<asp:TemplateField HeaderText=”Content Type”>
<ItemTemplate>
<asp:Label ID=”Label1” runat=”server”

Text=’<%# Bind(“ContentTypeDescription”) %>’>
</asp:Label>

</ItemTemplate>
<EditItemTemplate>
<asp:DropDownList ID=”DropDownList1” runat=”server”

DataSourceID=”sdsContentTypes” DataTextField=”Description”
DataValueField=”Id” SelectedValue=’<%# Bind(“ContentTypeId”) %>’>

</asp:DropDownList>
</EditItemTemplate>
<ItemStyle Width=”175px” />

</asp:TemplateField>

Just as with the Description, a TemplateField control is used. In read-only mode (defined by the
ItemTemplate) a Label is displayed with its text bound to the ContentTypeDescription column that
is retrieved from the database.

The EditItemTemplate holds a single <asp:DropDownList> with its DataSourceID set to
sdsContentTypes. This is the same SqlDataSource that is used to display the drop-down at the top
of the page. To preselect the right item in the list when the GridView is put in edit mode, and to get
the right value back when the item is saved in the database, the SelectedValue of the control is set to
<%# Bind(“ContentTypeId”) %>.

The <ItemStyle> element defined in the TemplateField is used to set the width of the column in
read-only and edit mode.

The SortOrder column is similar to the ContentType column. The only difference is that this column
doesn’t use a separate data source to get its data; the items in the drop-down list are hard-coded in the
page.

The final column you need to look at is the column with the Edit and Delete buttons. Again, the markup
for the column is remarkably simple:

<asp:CommandField ShowDeleteButton=”True”
ShowEditButton=”True” ButtonType=”Button” >

<ItemStyle Width=”150px” />
</asp:CommandField>

The CommandField control has a ShowDeleteButton and a ShowEditButton property, both of which are
set to True. When you click the Edit button, the control switches to edit mode, the Delete button disappears
temporarily, and the Edit button is replaced with an Update and a Cancel button. When you make a
change in the data and then click the Update button, the GridView triggers the UpdateCommand of the
SqlDataSource it is bound to. When you click the Delete button, it triggers the DeleteCommand on the
associated data source. To see how that works, it’s time to look at the code for the SqlDataSource control
that is used by the GridView:

<asp:SqlDataSource ID=”sdsCategories” runat=”server”
ConnectionString=”<%$ ConnectionStrings:Cms %>”
DeleteCommand=”sprocCategoryDeleteSingleItem”

149

Wrox CMS

08_749516 ch05.qxp 2/10/06 9:14 PM Page 149

DeleteCommandType=”StoredProcedure”
InsertCommand=”sprocCategoryInsertUpdateSingleItem”
InsertCommandType=”StoredProcedure”
SelectCommand=”sprocCategorySelectlist”
SelectCommandType=”StoredProcedure”
UpdateCommand=”sprocCategoryInsertUpdateSingleItem”
UpdateCommandType=”StoredProcedure”

... Parameters are defined here
</asp:SqlDataSource>

In addition to the familiar connection string, the SqlDataSource has a number of Command and
CommandType attributes defined. For each of the four main data actions — selecting, inserting, updating,
and deleting — the control has a command that points to an associated stored procedure. For each of
these commands, the CommandType has been set to StoredProcedure.

Within the SqlDataSource tags, the parameters for the stored procedure are defined. The
<SelectParameters> element defines the parameters passed to the Select stored procedure to select
a list of categories. As you recall, this list is filtered on the content type specified by the drop-down
list at the top of the page:

<SelectParameters>
<asp:ControlParameter ControlID=”lstContentTypes”
Name=”contentTypeId” PropertyName=”SelectedValue”
Type=”Int32” DefaultValue=”-1” />

</SelectParameters>

The only parameter is one of type ControlParameter that looks at the lstContentTypes drop-
down. When the data source is about to get the data from the database, it looks at that control, gets its
SelectedValue, and then passes that to the stored procedure.

To allow updating of data, the data source also has UpdateParameters defined:

<UpdateParameters>
<asp:Parameter Name=”returnValue” Type=”Int32” Direction=”ReturnValue” />
<asp:Parameter Name=”id” Type=”Int32” />
<asp:Parameter Name=”description” Type=”String” />
<asp:Parameter Name=”contentTypeId” Type=”Int32” />
<asp:Parameter Name=”sortOrder” Type=”Int32” />

</UpdateParameters>

For each of the parameters of the stored procedure, one Parameter object is defined. Note that there is
no need to tie these parameters to controls. Instead, the GridView uses Bind to bind its controls to the
parameters of the data source by their name. So, the Bind expression for the ContentType drop-down in
the edit template binds directly to this parameter by its name.

Note the additional returnValue parameter that is used to get the return value from the stored proce-
dure. When you use the Configure Data Source command from the Smart Tasks panel for the data
source, you don’t get a chance to add this parameter. However, you can either type the parameter
directly in Source View, or click the ellipses (see Figure 5-11) after the UpdateQuery (or other queries)
on the Properties Grid for the data source control in Design View.

150

Chapter 5

08_749516 ch05.qxp 2/10/06 9:14 PM Page 150

Figure 5-11

This brings up the Command and Parameter Editor shown in Figure 5-12 that allows you to reorder,
delete, and create new or change existing parameters. To change the Direction for a parameter, you need
to click the Show Advanced Properties link and then choose an option from the Direction drop-down.

Figure 5-12

With the GridView and its fields collection bound to the data source control, which in turn is bound to
stored procedures in the database, you have everything in place to allow updating and deletion of data.
There are, however, two other things you need to examine. The first thing is how to handle duplicate
records. The other is how to insert new categories. Take a look at solving the duplicates problem first.

Each category within a specific content type must have a unique description because it doesn’t make
sense to have two menu items with the same name. The stored procedure that inserts and updates

151

Wrox CMS

08_749516 ch05.qxp 2/10/06 9:14 PM Page 151

categories handles this by finding out if there is already a category with the same name before the insert
or update takes place:

IF NOT EXISTS (SELECT Id FROM Category
WHERE Description = @description AND ContentTypeId = @contentTypeId)

BEGIN
-- Insert the item here

END
ELSE
BEGIN

SET @returnValue = -1 -- record already exists
END

Only when the IF NOT EXISTS check returns True is the new item inserted. Otherwise, the stored pro-
cedure returns -1 to the SqlDataSource through its returnValue parameter you saw earlier. In the
code-behind for the Categories page, that return value is examined. If it’s not -1, the insert or update
succeeded. Otherwise, an error message is displayed to the user, indicating the database action didn’t
succeed. The place where the parameter is examined is inside the Inserted and Updated events of the
data source:

Protected Sub sdsCategories_AfterInsertOrUpdate(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.SqlDataSourceStatusEventArgs) _
Handles sdsCategories.Inserted, sdsCategories.Updated

Dim id As Integer = Convert.ToInt32(e.Command.Parameters(“@returnValue”).Value)
If id = -1 Then
lblErrorMessage.Text = “There is already a category with this description.” & _

“Your changes have not been applied.
”
lblErrorMessage.Visible = True

End If
End Sub

Note the comma-separated list of the Handles clause; this allows you to hook up one event handler to
multiple events of the same or different controls.

Because the GridView does not support inserting data, a FormView control is used to allow the user
to insert a new category. Very similar to the way the GridView is set up, the FormView contains an
InsertItemTemplate with controls that expose their values to the SqlDataSource control to
allow the insert to happen. The InsertItemTemplate contains a text box for the Description, a
RequiredFieldValidator, and two drop-downs for the content type and the sort order columns. To
view the FormView so you can insert a new item, click the Create New button on the Categories page.
This fires the btnNew_Click method in the code-behind that hides the List panel and then shows the
New panel, allowing you to insert the new category.

Just like the GridView, the FormView is bound to the sdsCategories data source, this time using its
InsertCommand to send the details the user entered to the stored procedure that eventually inserts the
new category. When you click the Insert button, the values you entered in the FormView are sent to the
SqlDataSource, which forwards them to the database. Just as with the GridView, the sdsCategories_
AfterInsertOrUpdate method is used to determine whether a duplicate category has been inserted.

152

Chapter 5

08_749516 ch05.qxp 2/10/06 9:14 PM Page 152

Now that you’re able to define the appearance of the site by managing the items in the main and sub-
menu, it’s time to look at how you can create the actual content for the site. The next section looks at the
ContentList.aspx and AddEditContent.aspx pages that allow you to manage content items.

Managing Content
When you click the Manage Content button in the Admin menu, you’re taken to ContentList.aspx that dis-
plays a list with the available content items in the database. To make it easy to distinguish between active
and deleted content, the page has a drop-down with an Active and Deleted item. Whenever you choose a
new item from that drop-down the page is refreshed and displays a list with either previously deleted or
active content items. The page also contains a SqlDataSource with its Select and Delete commands set
to stored procedures in the database to allow you to get a list of content items, or to delete a single item.

The GridView that is used on this page has some similarities with the one used to display the categories.
Two important differences exist, though, which are examined now. First of all, the GridView is not
editable, so you’ll see no TemplateFields with an EditItemTemplate.

The other difference is the way in which the buttons to delete and edit existing items are set up. With the
categories page you used a single CommandField with ShowDeleteButton and ShowEditButton both
set to True. For the content page, however, each button has its own column:

<asp:ButtonField ButtonType=”Button” CommandName=”Edit”
HeaderText=”Edit” Text=”Edit”>

<ItemStyle Width=”100px” />
</asp:ButtonField>
<asp:CommandField ButtonType=”Button” ShowDeleteButton=”True”>
<ItemStyle Width=”100px” />

</asp:CommandField>

The Delete button is still generated by a CommandField with ShowDeleteButton set to True. When
you click the Delete button, the GridView triggers the DeleteCommand on the associated SqlDataSource
control to delete the item from the database. This works exactly the same as deleting categories.

When you start editing a content item, things behave a bit differently, though. Because a content item
requires some fields other than the default single-line text boxes or even a few drop-down controls you
can add in the EditItemTemplate of the GridView, it’s not really an option to edit a content item inline
in the grid. Instead, when you click the Edit button, the GridView control’s RowCommand is triggered
and you’re taken to a separate page, AddEditContent.aspx, that allows you to enter content using com-
plex controls. You’ll see that page later. The code that sends you to this page looks like this:

Protected Sub gvContent_RowCommand(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.GridViewCommandEventArgs) _
Handles gvContent.RowCommand

Select Case e.CommandName.ToLower()
Case “edit”
Dim recordIndex As Integer
Dim recordId As Integer
recordIndex = Convert.ToInt32(e.CommandArgument)
recordId = Convert.ToInt32(gvContent.DataKeys(recordIndex).Value)
Response.Redirect(“AddEditContent.aspx?Id=” & recordId.ToString())

End Select
End Sub

153

Wrox CMS

08_749516 ch05.qxp 2/10/06 9:14 PM Page 153

The ButtonField for the Edit button you saw earlier has its CommandName set to Edit. Inside the
RowCommand event, this command name is made available through the CommandName property of the
GridViewCommandEventArgs passed to the method. When the command name matches Edit, you
know the Edit button has been clicked. You can then use the CommandArgument to find the zero-based
index of the clicked row in the grid. So, when you click the third item, the CommandArgument will have
a value of 2. You can then use this index to ask the GridView for the DataKey that belongs to the clicked
item. The DataKeys collection of the GridView returns the primary key of a content item in the database,
which is exactly what you need because AddEditContent.aspx expects that ID in case you’re editing a
content item. Finally, when you have the key, you can construct a URL with the ID appended to the
query string and send the user to that page.

Earlier you learned that the FormView is a great control that allows you to enter data into the database
with little to no code. However, its usage is often limited to simpler data access scenarios like the
Categories page in the Management folder. One of the biggest drawbacks of the control is the fact that
you need to define separate templates for insertion and for updating data. With complex, multi-control
data pages, setting up such a form can become tedious and error-prone.

To avoid these problems, a different approach was taken with the AddEditContent page. Instead of rely-
ing exclusively on built-in controls to get data from and in the database, a single Content class was cre-
ated that represents a content item in the database. Additionally, the ContentDB class was designed,
which is responsible for communicating with the database. Inside the page, you use these classes to get
a content item from the database, and then use regular controls like text boxes and drop-downs in the
page directly. To see how this all works, look at the markup of the AddEditContent.aspx page.

At the bottom of the page, you see two SqlDataSource controls that are used to display the available
content types and categories in a drop-down. The data source for the categories, called sdsCategories,
is tied to the content types drop-down with a single SelectParameter. This ensures that whenever you
choose a new content type from the drop-down, the page will refresh and show an updated list with
categories for that content type. The two drop-down controls are exactly the same as the others you
have seen so far. They have their DataSourceID set to the relevant SqlDataSource control, and their
DataTextField and DataValueField properties point to the columns held in the DataSet returned by
the data sources. So far, there is nothing new in the page. But how do the other controls in the page get
their values? To understand how that works, open up the code-behind for AddEditContent.aspx and
look at the Page_Load event:

Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load

If Request.QueryString.Get(“Id”) IsNot Nothing Then
contentId = Convert.ToInt32(Request.QueryString.Get(“Id”))

End If
If Not Page.IsPostBack And contentId > 0 Then
Dim myContentItem As Content = Content.GetItem(contentId)
If myContentItem IsNot Nothing Then
Me.Title = “Edit “ & myContentItem.Title
txtTitle.Text = myContentItem.Title
txtIntroText.Value = myContentItem.IntroText
txtBodyText.Value = myContentItem.BodyText
chkVisible.Checked = myContentItem.Visible

lstContentTypes.DataBind()

154

Chapter 5

08_749516 ch05.qxp 2/10/06 9:14 PM Page 154

lstContentTypes.SelectedValue = myContentItem.ContentTypeId.ToString()

lstCategories.DataBind()
lstCategories.SelectedValue = myContentItem.CategoryId.ToString()

End If
End If

End Sub

Inside this method, the code tries to retrieve the requested contentId from the query string if it has
been provided. If there is no query string it means a new item should be inserted, so the next If block
won’t run. If there is a query string, however, a few actions are carried out. First of all, a call is made to
the GetItem method of the Content class. This method expects the ID of the content item in the data-
base, and then returns a strongly typed Content item. You look at the Content object and its associated
ContentDB class in full detail after finishing the discussion of the Page_Load method. Once you have a
valid Content object, you can use its public properties like Title, IntroText, and BodyText to set the
initial values of the controls and the title of the page. The txtIntroText and txtBodyText controls are
in fact complex HTML editors powered by the FCKeditor. Again, this is examined in full detail a little
later.

Unlike the text controls such as the Title text box, the drop-down controls require a bit more thought.
The Categories drop-down is bound to the Content Type drop-down so it always displays categories
from the currently selected content type. This means that you should fill and preselect the content type
list before you can work with the categories. The code in the Page_Load method does exactly that:

lstContentTypes.DataBind()
lstContentTypes.SelectedValue = myContentItem.ContentTypeId.ToString()

First, a call is made to the DataBind method of the lstContentTypes control. This in turn triggers its
associated SqlDataSource control that gets the items from the database, which are then added as
<asp:ListItem> controls to the drop-down. The second line of code then sets the SelectedValue of
the control equal to the ContentType of the content item.

The next two lines then get the items for the second drop-down that displays the available categories:

lstCategories.DataBind()
lstCategories.SelectedValue = myContentItem.CategoryId.ToString()

When the call to DataBind of the categories drop-down is made, its related SqlDataSource is triggered.
As stated previously, this control has a single SelectParameter that looks at the selected value of the
Content Type drop-down. Because just before the call to DataBind, you have set that SelectedValue,
the data source will now get the right categories belonging to the selected content type. When the items
have been added to the drop-down list, the last line sets its SelectedValue to the one retrieved from
the CategoryId of the Content object, just as with the content type.

Now that you know how the data from the Content object is displayed in the various controls, you may
be wondering how the content item is created in the first place. As you saw in the section “Design of the
Wrox CMS” earlier in this chapter, the Content class has a number of public properties and a shared
method called GetItem that accepts the ID of a content item and returns an instance of the Content
class. All the GetItem method in the business layer does is delegate its responsibility to a method with
the same name in the ContentDB class:

155

Wrox CMS

08_749516 ch05.qxp 2/10/06 9:14 PM Page 155

Public Shared Function GetItem(ByVal id As Integer) As Content
Return ContentDB.GetItem(id)

End Function

This GetItem method in the ContentDB class in turn gets the item from the database and returns it to
the calling code:

Public Shared Function GetItem(ByVal id As Integer) As Content
Dim theContentItem As Content = Nothing
Using myConnection As New SqlConnection(AppConfiguration.ConnectionString)
Dim myCommand As SqlCommand = New SqlCommand _

(“sprocContentSelectSingleItem”, myConnection)

myCommand.CommandType = CommandType.StoredProcedure
myCommand.Parameters.AddWithValue(“@id”, id)
myConnection.Open()

Using myReader As SqlDataReader = _
myCommand.ExecuteReader(CommandBehavior.CloseConnection)

If myReader.Read Then
theContentItem = New Content(myReader.GetInt32(myReader.GetOrdinal(“Id”)))
theContentItem.Title = myReader.GetString(myReader.GetOrdinal(“Title”))
theContentItem.IntroText = _

myReader.GetString(myReader.GetOrdinal(“IntroText”))
theContentItem.BodyText = _

myReader.GetString(myReader.GetOrdinal(“BodyText”))
theContentItem.ContentTypeId = _

myReader.GetInt32(myReader.GetOrdinal(“ContentTypeId”))
theContentItem.CategoryId = _

myReader.GetInt32(myReader.GetOrdinal(“CategoryId”))
theContentItem.Visible = _

myReader.GetBoolean(myReader.GetOrdinal(“Visible”))
End If
myReader.Close()

End Using
End Using
Return theContentItem

End Function

The code starts off by declaring a new variable of type Content and setting it to Nothing. If the item
cannot be found in the database, this value will be returned from the method, so the calling ASPX page
can take that into account.

Next, an instance of a SqlConnection and a SqlCommand are created. The new Using statement
ensures the connection object is disposed of automatically when the block of code has finished. The
name of the stored procedure you want to execute is passed to the constructor of the Command object,
together with the connection. The CommandType of the Command object is set to StoredProcedure and a
single parameter that holds the ID of the content item in the database is created.

Then the connection is opened and the command’s ExecuteReader method is fired, resulting in a
SqlDataReader. If the Read() method returns True, it means a record has been found, so you can
instantiate a new Content object and set each of its public properties retrieved from the SqlDataReader.
Notice the use of the GetOrdinal methods. By design the Get* methods, like GetInt32 and GetString

156

Chapter 5

08_749516 ch05.qxp 2/10/06 9:14 PM Page 156

of the SqlDataReader, accept only a zero-based integer with the index of the requested column.
This means that to get at the Title of the content item, you’d need to use something like myReader
.GetString(1). This results in quite unreadable code, because you’ll quickly forget which column has
what index number. Fortunately, the SqlDataReader also has a GetOrdinal method that accepts a col-
umn’s name and returns its ordinal position in the result set. This makes the previous bit of code much
easier to read and maintain: myReader.GetString(myReader.GetOrdinal(“Title”)). Using the
GetOrdinal method may cause a tiny bit of overhead, but compared to the benefits of better code, this
is a cheap price to pay.

Once all the public properties of the content item have been set, the SqlDataReader is closed and the
content item is returned to the calling code.

Undoubtedly you have noticed the fancy HTML editor used in the AddEditContent.aspx page. This edi-
tor is not a part of the .NET Framework, nor is it an integral part of ASP.NET. Instead, the editor, called
FCKeditor, is developed by a group of people lead by Frederico Caldeira Knabben (hence the FCK in
FCKeditor) and made available to the public as an open source project. You can find the latest version of
the editor at www.fckeditor.com. Because the (easy) installation process for the editor is explained in
the section “Setting up the Wrox CMS,” this section focuses exclusively on how to use it.

Using the FCKeditor is about as simple as installing it. For ASP.NET pages, the creators of the editor
developed a separate .NET assembly (a .dll file) that must be placed in the Bin folder of the application.
You can use that same DLL to customize the toolbox of Visual Web Developer, so you can drag instances
of the editor from your toolbox onto the page. To customize the toolbox, open up the toolbox (Ctrl+Alt+x),
right-click it, and select Choose Items. In the dialog that follows, click Browse and then select the
file FredCK.FCKeditorV2.dll located in the Bin folder of your application (located at C:\Inetpub\
wwwroot\Cms\Bin after a default installation of the Wrox CMS). The editor will end up as an item called
FCKeditor with the default gear icon on the toolbox. Now whenever you need an HTML editor, drag an
instance of it on your page instead of a standard text box.

The editor is very easy to work with, both from an end-user’s and a programmer’s point of view. Just
like a regular .NET control it exposes properties such as width and height. However, when working with
the editor, you’ll find a few differences that are worth discussing. First of all the editor doesn’t have a
Text property like a default text box does, but has a Value property instead. For all practical purposes,
these properties can be treated the same in that the Value allows you to set and get the HTML-formatted
text from the control.

Another important thing to notice is the way the editor works with validator controls. By default, the
ASP.NET validators are triggered when the associated form control loses focus; for example, when you
tab away or click a Submit button. However, with the FCKeditor this seems to happen too late. The
editor works by copying the formatted HTML from the editor to a hidden form field, which in turn is
validated. This copying also takes place when the editor loses focus, but after the controls have been
validated. For your end-user, this results in a message that the field used for the editor is required when
in fact it already has a valid value. The quickest way to fix that is to simply press Submit again. Obviously,
this is not a good solution for a real-world application. The next best thing is to disable client-side validation
in pages that use the editor. That technique was applied to the AddEditContent.aspx page by simply setting
the CausesValidation attribute of the Save button to False. Making this change won’t prevent validation
from occurring. Back at the server, each of the controls is still checked for their values; the validation just
doesn’t fire at the client anymore.

157

Wrox CMS

08_749516 ch05.qxp 2/10/06 9:14 PM Page 157

Notice the use of a property called ToolbarSet to give the control for the IntroText a different set of
buttons than the one for the BodyText. The configuration for the FCKeditor, stored in the file FCKeditor\
fckconfig.js, allows you to define various toolbar sets and refer to them by name. The Default toolbar
set contains all of the available buttons, whereas WroxCms and Basic use a limited set. To create a new
toolbar set, make a copy of Default, and then remove whatever button you don’t need.

Because the FCKeditor controls can contain HTML tags and possibly JavaScript, the ASP.NET frame-
work by default blocks these values and instead throws an HttpRequestValidationException excep-
tion with a message like “A potentially dangerous Request.Form value was detected.” To prevent that
error from occurring, the ValidateRequest is set to False in the page directive for the
AddEditContent.aspx page.

The final part of the AddEditContent.aspx page you need to look at is saving an item in the database.
When you fill in all the required fields in the page, possibly formatting the IntroText and BodyText
parts of the item using the FCKeditor, and press the Save button, the following code in the Click event
handler of the Save button fires:

Protected Sub btnSave_Click(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles btnSave.Click
Page.Validate()
If Page.IsValid Then
Dim myContentItem As Content
If Request.QueryString.Get(“Id”) IsNot String.Empty Then
myContentItem = New Content(Convert.ToInt32(Request.QueryString.Get(“Id”)))

Else
myContentItem = New Content()

End If
myContentItem.Title = txtTitle.Text
myContentItem.IntroText = txtIntroText.Value
myContentItem.BodyText = txtBodyText.Value
myContentItem.Visible = chkVisible.Checked
myContentItem.ContentTypeId = Convert.ToInt32(lstContentTypes.SelectedValue)
myContentItem.CategoryId = Convert.ToInt32(lstCategories.SelectedValue)
myContentItem.Save()
Response.Redirect(“ContentList.aspx”)

End If
End Sub

First Page.Validate() is called to see if each of the controls in the page has a valid value. If the page is
valid, you can create a new instance of a Content item instance. This can happen in two different ways,
depending on whether you’re currently editing an existing item or creating a brand new one. In the
class design for the Content class, the ID of the Content class is read-only to prevent calling code from
changing it during the object’s lifetime. That’s why an overloaded constructor of the Content class is
called, which receives the ID of the content item in case you’re updating an existing item. Otherwise,
when you’re creating a new content item, the code simply calls the default constructor to get a new
Content instance.

The code then assigns each of the public properties of the Content class a value by retrieving them from
the relevant controls. Notice again the use of the .Value instead of .Text to get the values of the two
FCKeditors. Once all properties have been set, call the Save method on the Content class. Similar to the
GetItem method, this method simply calls the Save method in the ContentDB class and passes itself to
it using the keyword Me:

158

Chapter 5

08_749516 ch05.qxp 2/10/06 9:14 PM Page 158

Public Sub Save()
ContentDB.Save(Me)

End Sub

Just like the GetItem method you saw earlier, Save sets up a SqlConnection and a SqlCommand. It
then assigns the Command object the relevant parameters whose values it derives from the Content item
passed to the method. In the end, ExecuteNonQuery is used to send the command to the database:

If contentItem.Id > 0 Then
myCommand.Parameters.AddWithValue(“@id”, contentItem.Id)

End If

myCommand.Parameters.AddWithValue(“@title”, contentItem.Title)
myCommand.Parameters.AddWithValue(“@introText”, contentItem.IntroText)
myCommand.Parameters.AddWithValue(“@bodyText”, contentItem.BodyText)
myCommand.Parameters.AddWithValue(“@contentTypeId”, contentItem.ContentTypeId)
myCommand.Parameters.AddWithValue(“@categoryId”, contentItem.CategoryId)
myCommand.Parameters.AddWithValue(“@visible”, contentItem.Visible)

myConnection.Open()
myCommand.ExecuteNonQuery()
myConnection.Close()

When this method is finished, control is returned to the calling ASPX page, which simply redirects the
user back to the ContentList page where the content item is now visible.

If you have some previous experience with programming you may recognize some problems with the
data access code you just saw. First of all, there is no error handling. Instead of using a Try/Catch block
the code is simply executed, letting any error bubble up to the final ASPX page. This isn’t considered
good programming practice, as it’s very hard to see where, when, and how the errors in your site occur.
In the next chapter you see a neat way to catch any error that occurs at run time and use it to construct a
detailed error e-mail that can be sent to the site’s administrator or a developer.

The second thing you may have noticed is that the code you saw is strongly tied to SQL Server. Although
developing for a single database type is quick and easy, it may not always be a good solution. In the next
chapter you learn how to write data access code that works with SQL Server and Microsoft Access with-
out any modifications.

Inserting new content or managing existing items is the final step in the Content Management process.
All that’s left now is to look at how to present the content in the front end of the site. With the more
advanced technologies of inserting, updating, and deleting content behind you, displaying content is
now a piece of cake.

Displaying Content on the Web Site
The display of the content in the public area of the site is handled by two pages: ContentList.aspx
and ContentDetail.aspx. The first is responsible for displaying a list of content items published in the
requested content type and category. It displays a short version of each content item in a DataList con-
trol that holds HyperLink controls that take you to the detail page. This detail page then shows the full
details of the content item.

159

Wrox CMS

08_749516 ch05.qxp 2/10/06 9:14 PM Page 159

The ContentList.aspx page contains a single SqlDataSource control with two select parameters: one for
the content type and one for the category. Both these parameters are retrieved from the query string,
when available:

<asp:SqlDataSource ID=”sdsContentList” runat=”server”
ConnectionString=”<%$ ConnectionStrings:Cms %>”
SelectCommand=”sprocContentSelectListByContentTypeAndCategoryId”
SelectCommandType=”StoredProcedure”
CancelSelectOnNullParameter=”False”>

<SelectParameters>
<asp:QueryStringParameter Name=”contentTypeId”

QueryStringField=”ContentTypeId” Type=”Int32” />
<asp:QueryStringParameter Name=”categoryId”

QueryStringField=”CategoryId” Type=”Int32” DefaultValue=”” />
</SelectParameters>

</asp:SqlDataSource>

When this data source is about to get the data from the database, it gets the values for the content type
and the category from the query string first and assigns them to the parameters. Notice the use of the
CancelSelectOnNullParameter attribute on the SqlDataSource control. The default of this parame-
ter is True, which means the control won’t get data from the database if any of the parameters contains a
null value. In this situation, this is not what you want. When one of the content types is clicked, and no
category has been selected yet, you want to display all the content items that belong to the chosen con-
tent type, regardless of their category. The stored procedure in the database returns all the items for a
certain content type when the CategoryId parameter is null so you must ensure that the code still
accesses the procedure even if there is no query string for the category. You accomplish this by setting
CancelSelectOnNullParameter to False.

The SqlDataSource that gets the content items from the database is used by a DataList in the page. It
has a simple ItemTemplate that displays the item’s Title, IntroText, and a “Read more” link:

<asp:DataList ID=”dlContent” runat=”server” DataKeyField=”Id”
DataSourceID=”sdsContentList”>

<ItemTemplate>
<h2 class=”ItemTitle”><asp:Literal ID=”lblTitle”

runat=”server” Text=’<%# Bind(“Title”) %>’></asp:Literal></h2>
<div class=”IntroText”>
<asp:Literal ID=”lblIntroText” runat=”server”

Text=’<%# Eval(“IntroText”) %>’></asp:Literal></div>

<asp:HyperLink ID=”hyperReadMore” runat=”server”

NavigateUrl=’<%# “~/ContentDetail.aspx?Id=” &
Eval(“Id”) & “&ContentTypeId=” & Eval(“ContentTypeId”)& “&CategoryId=” &
Eval(“CategoryId”) %>’ Text=”Read more...”></asp:HyperLink>

</ItemTemplate>
<SeparatorTemplate>
<hr />

</SeparatorTemplate>
</asp:DataList>

Each content item in the list is separated from the previous using an <hr /> tag in the
<SeparatorTemplate>. The contents of this separator can be fully customized. You could put
anything you want between two items, including images, banners, or plain HTML.

160

Chapter 5

08_749516 ch05.qxp 2/10/06 9:14 PM Page 160

Notice the use of Eval instead of Bind to bind the data to the controls in the template. Because you need
to display read-only data, there is no need to set up two-way data-binding, and you can use the faster
Eval method.

If you request the list page in the browser and then click a main menu, you’ll see a list with content
items appear. The “Read more” link below each item takes you to the ContentDetails page. This page
holds three <asp:Literal> controls that display the relevant content from the database:

<h1 class=”ItemTitle”><asp:Literal ID=”litTitle” runat=”server”></asp:Literal></h1>
<div class=”IntroText”><asp:Literal ID=”litIntrotext”

runat=”server”></asp:Literal></div>
<div class=”BodyText”><asp:Literal ID=”litBodyText”

runat=”server”></asp:Literal></div>

The Literal controls are wrapped inside <h1> and <div> elements so it’s easy to apply a CSS class that
changes their formatting at run time. The Styles.css file has an ItemTitle class that gives the text a large
and bold font, whereas the IntroText class changes the text to an italic font. You can use any CSS you
see fit to format the text by changing the classes defined in the Styles.css file in the CSS folder.

The three Literal controls get their value from an instance of the Content class using the same
GetItem method you saw earlier. When the details page loads, the following code is executed in its
Page_Load event:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load

If Request.QueryString.Get(“Id”) IsNot Nothing Then
contentId = Convert.ToInt32(Request.QueryString.Get(“Id”))
Dim contentItem As Content = Content.GetItem(contentId)
If contentItem IsNot Nothing Then
Me.Title = contentItem.Title
litTitle.Text = contentItem.Title
litIntrotext.Text = contentItem.IntroText
litBodyText.Text = contentItem.BodyText

End If
End If

End Sub

Similar to the AddEditContent.aspx page, this code gets a new instance of the Content class by calling
GetItem and passing it the ID of the content item retrieved from the query string. If the method returns
a Content instance, the page’s Title and the Text property of the three Literal controls are filled
with the Title, IntroText, and BodyText properties. The Literal controls can also hold HTML that
comes from the FCKeditor used to format the content item in the management section.

The Wrox CMS is only the beginning of the things you can do with fully database-driven web sites. Both
the presentation and the functionality of the site are pretty simple at this point, to allow you to focus
on important concepts and technologies without being caught up by complex design and formatting
markup. But it’s easy to come up with a list of new features and enhancements to the Wrox CMS that
make it even more useful than it already is.

For examples of possible modifications to the Wrox CMS, look at the companion CD-ROM or go to
www.wrox.com and find this book’s download page.

161

Wrox CMS

08_749516 ch05.qxp 2/10/06 9:14 PM Page 161

Setting up the Wrox CMS
You can set up the Wrox CMS in two ways: by using the supplied installer or by manually setting up the
site with the code that comes with this book.

You can use the installer when you have IIS running on your machine and want to use it for the Wrox
CMS. Running the installer creates a virtual directory called Cms under your default web site. The folder
that is created during setup contains the full source of the application and all other files required to run
the application, including the database.

Alternatively, you can choose to unpack the source from the CD-ROM or code download to a folder of
your choice. This gives you a bit more choice with regard to where the files are placed, but you’ll have to
set up IIS manually, or browse to the site from within Visual Web Developer.

For both installation methods it’s assumed that the .NET 2.0 Framework, which is an installation require-
ment for Visual Web Developer, has already been installed. It’s also assumed that you have installed SQL
Server 2005 Express Edition with an instance name of SqlExpress. If you chose a different instance name,
make sure you use that name in the connection string for the Wrox CMS in the Web.config file.

Using the Installer
To install the Wrox CMS, open the folder Chapter 05 - Wrox CMS\Installer and double-click setup.exe. This
starts the installer. By default the web site will be installed as a virtual directory called CMS under the
default web site. You should leave all values in the setup dialog to their defaults and click Next until the
installer has finished. Once the site is installed, refer to the section “Changing IIS Settings” later in the
chapter for further installation instructions.

Manual Installation
You can also manually install the Wrox CMS by extracting the files from the accompanying CD-ROM or
code download to your local hard drive. To install manually, locate the folder Chapter 05 - Wrox CMS
and then open the Source folder. In that folder you’ll find a zip file called Chapter 05 - Wrox CMS.zip.
Extract the contents of the zip file to a location on your hard drive, for example C:\Inetpub\wwwroot\.
Make sure you extract the files with the option Use Folder Names or something similar to maintain the
original folder structure. You should end up with a folder like C:\Inetpub\wwwroot\Cms that in turn
contains a number of files and other folders. The remainder of this section assumes you extracted the
CMS to C:\Inetpub\wwwroot\Cms.

Changing IIS Settings
Regardless of the installation method you chose, you might need to configure IIS to work properly with
your site. If you have previous versions of the .NET Framework on your machine, IIS will be configured
to use that version of the framework, and not version 2.0. Follow these steps to configure IIS:

1. Click Start➪Run, type inetmgr in the dialog box, and press Enter.

2. Expand the tree on the left until you see your server. Right-click it and choose Properties.

162

Chapter 5

08_749516 ch05.qxp 2/10/06 9:14 PM Page 162

3. Click the ASP.NET tab.

4. From the ASP.NET version drop-down, choose 2.0.50727 and click OK.

You may need to restart IIS for the changes to take effect.

Changing Security Settings
The final configuration change you need to make is to enable Write permissions on the UserFiles folder
that is used by the FCKeditor and the App_Data folder where the database is stored. You’ll need to give
permissions to the account that the web site runs under. On Windows XP this is the ASPNET account,
and on Windows Server 2003 the account is called Network Service. If you’re running the site on the
built-in development web server from within Visual Web Developer, the account used is the one you use
to log on to your machine.

In all cases, follow these steps to set the permissions:

1. Open a Windows Explorer and locate the UserFiles folder in your CMS web site. If the folder
isn’t there, create it first.

2. Right-click the UserFiles folder, choose Properties, and click the Security tab. If you don’t see the
Security tab, choose Tools➪Folder Options in Windows Explorer, open the View tab, scroll all
the way down to the bottom of the Advanced settings list, and uncheck Use Simple File Sharing,
as shown in Figure 5-13.

Click OK to dismiss the Folder Options dialog.

Figure 5-13

163

Wrox CMS

08_749516 ch05.qxp 2/10/06 9:14 PM Page 163

3. Back on the Security tab for the UserFiles folder, click the Add button, type the name of the
account that requires the permissions, and click OK.

4. Next, make sure the account you just added has at least Read and Modify permissions in the
Permissions For list, as shown in Figure 5-14.

Figure 5-14

5. Finally, click OK to apply the changes.

6. Repeat the first five steps, but this time configure the settings for the App_Data folder that holds
the CMS database.

Testing Out the Site
With the configured database and file system, you’re now ready to launch the application. Back in Visual
Web Developer, press Ctrl+F5 to open up Wrox CMS. To manage the categories and the content in the
Management section of the site, click the Admin tab. Because the Management folder is protected with a
setting in the Web.config file, you’ll need to log in first. If you used the installer to set up the Wrox CMS,
you can log in with a username of Administrator and a password of Admin123#. If you can’t access
the Management section, make sure you created the Administrator role. Also make sure you assigned
the account you created to that role.

The first time the page loads, it might take a while before you see the CMS homepage appear. The con-
nection string in the Web.config file instructs SQL Server Express to attach the CMS database automati-
cally, which takes some time. If you get a time-out error, refresh your browser to try again.

164

Chapter 5

08_749516 ch05.qxp 2/10/06 9:14 PM Page 164

If after waiting a long time you get a “The page cannot be displayed” error instead of the CMS home-
page, close your browser and go back to Visual Web Developer. Choose Website➪Start Options and
then make sure the NTLM authentication checkbox is unchecked. Then press Ctrl+F5 again to open the
web site.

Summary
In this chapter you learned how to design, build, and use a content management system. With this con-
tent management system, you have easy access to the content you publish, allowing you to add and
update content online.

The chapter started with a tour of the web site and the CMS. You saw how the site uses content types
and categories that are displayed as main and sub-menu items. You also saw how the site displays these
content items, and how you can change these items using the CMS.

In the section “Design of the Wrox CMS” you saw how the site is organized by looking at the individual
files in the web site and the classes in the business and data access layer. That section also explained the
design of the database for the web site.

You then got a good look at the inner workings of the pages and classes that make up the CMS. You
learned how to use SqlDataSource controls to get data in and out of the database. You also learned
how to create a custom class that can access the database, to avoid some of the problems that the
SqlDataSource controls have. Besides the individual pages, user controls, and classes that make up
the site, you also saw how to embed the FCKeditor in your application, to allow your end-users to for-
mat their content using a fancy HTML editor.

At the end of the chapter you saw two different ways to install the Wrox CMS. The automated installer
gives you a quick and easy way to get the CMS up and running with little effort. The manual process in
turn gives you finer control over how and where the application is installed.

165

Wrox CMS

08_749516 ch05.qxp 2/10/06 9:14 PM Page 165

08_749516 ch05.qxp 2/10/06 9:14 PM Page 166

6
Wrox Blog

Undoubtedly, blogging — a contraction of web and logging — is the most popular Internet applica-
tion of the past few years. Relatively new to the Internet world, blogging has now reached millions
of web users, turning them into mini-publishers of news, diaries, and biographies.

Blogging applications come in all sorts and sizes. There are subscription-based blog sites from com-
mercial companies, where you need to sign up for an account. Once you have an account, you can
sign in to the company’s web site to manage your blog. People who want to read your blog should
come to that same site. Other companies provide blogging services that allow you to manage your
blog entries on their site, and make them available publicly (for example, on your own site) through
XML and Web Services. Yet other organizations have developed ready-made blogging applications
that you can install on your own server. Some of them come as free or open source packages, of
which probably the most well known is Community Server (www.communityserver.org), which
is also the driving force behind the forums on Microsoft’s community site, www.asp.net.

Despite the many advantages these ready-made applications have, they all share one disadvantage:
They are often hard to incorporate into your web site, especially when you don’t control your own
server but use a shared hosting service instead.

The Wrox Blog application presented in this chapter is really easy to integrate in an existing web
application. This is accomplished by a few design decisions.

First of all, the Blog application does not contain normal ASPX WebForms; it consists solely of user
controls. This makes it easy to embed the Blog application in existing pages, simply by dragging a
few controls onto your page.

Secondly, the Blog application is designed to work with both a Microsoft Access database and with
SQL Server 2005. This can be very useful if you have a host that hasn’t upgraded to SQL Server 2005
yet, or if you have to pay for the additional SQL Server services. Switching the application over from
SQL Server to Access or vice versa is as simple as changing two settings in the Web.config file. This
means you could even switch without taking the site offline.

09_749516 ch06.qxp 2/10/06 9:15 PM Page 167

The first section in this chapter shows you how to use the Blog application. You see how the user con-
trols are incorporated in standard ASPX pages, enabling you to view and manage your blog.

The section “Design of the Wrox Blog” describes the design principles behind the Wrox Blog application.
You see the classes involved, and how they interact together. You also see the design of the SQL Server
and Microsoft Access databases.

The section that follows, “Code and Code Explanation,” gives you a good look at the classes, pages, and
the code-behind files that make up the Wrox Blog application.

In “Setting up the Wrox Blog” you get a thorough explanation of setting up the Wrox Blog. You see how
to run the supplied installer to create a full web site that uses the Blog application. You also learn how to
incorporate the Blog application in an existing web site. But, first things first: learning how to use the
Wrox Blog.

Using the Blog
Using the Wrox Blog web site is very easy. If you know how to use a word processor, you should have
no problems creating content for your blog site. When you have installed the Wrox Blog (see the section
“Setting up the Wrox Blog” near the end of this chapter for details) you can browse to the site by going
to http://localhost/Blog. The start page shown in Figure 6-1 appears.

Figure 6-1

168

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 168

This page contains two user controls; one for the left-hand bar with the calendar and the category list
and one for the items in the list on the right, referred to as blog entries or blog posts. The left-hand bar dis-
plays a calendar and a list with the categories available in the system. The number between the paren-
theses indicates how many blog posts have been published in that category. Both the calendar and the
category list are used to filter the list with blog entries you see in the right-hand pane. When the page
first loads, that pane displays the latest 15 blog entries in the system (or fewer when there aren’t that
many entries in the database). When you click a date in the calendar, the list on the right updates itself to
display the blog entries for that date. You can also click the greater than symbol (>) on the left of the cal-
endar to see entries posted during an entire week. If you click one of the categories, you’ll see all the
entries posted in that category.

To manage blog entries on the web site, you need to log in first. Once you’re authenticated, you’ll see a
Create New Entry button appear at the bottom of the page, as shown in Figure 6-2.

Figure 6-2

If you click that button, the page refreshes and shows a screen (see Figure 6-3) where you can enter a
new blog entry.

Here you can enter a title, the post’s body text, and the category in which you want to publish the item.
The calendar’s selected date defaults to today’s date, but to allow you to predate your blog entries you
can select a different date from the calendar.

Once you click the Save button, the entry appears on the web site and can be viewed by selecting the
appropriate category or date on which the item was published.

If you’re logged in, you also see an Edit This Entry link after each blog entry’s title. Clicking this link
brings up a similar edit screen with all the details already filled in, so you can easily change the entry.

Now that you know how to use the Wrox Blog application, it’s time to take a look at its design. In the
next section you see how the Wrox Blog application is designed, what classes are involved, and how the
code is able to operate with different kinds of databases.

169

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 169

Figure 6-3

Design of the Wrox Blog
The Wrox Blog is designed as a three-tier application, meaning the application consists of a presentation
layer, a business layer, and a data access layer. The presentation layer consists of two ASP.NET user con-
trols that are discussed later in the chapter. Both the business and the data access layers contain custom
classes defined in the files in the special App_Code folder in the root of the web site. You find the files
related to the business layer in the subfolder called BusinessLogic, and the data access layer is placed in
the DataAccess folder. This distinction isn’t really necessary, because the ASP.NET run time compiles
each file it finds in the App_Code folder or any of its subfolders automatically. However, placing the
files in separate folders makes it easier to see to what layer each file and class belongs. The files in the
folder are named after the classes they contain, so you’ll find the class BlogManager in the file
BlogManager.vb, and so on.

The Business Layer
The business layer of the Wrox Blog is built around two important entities: the BlogEntry and the
BlogManager classes. The BlogEntry class represents a blog entry that is stored in the database and can
be viewed on the web site, and the BlogManager class is responsible for getting the blog entries in and
out of the database. In addition to these two important classes, you’ll also find a UserManager class in

170

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 170

the BusinessLayer folder. This class is used to allow users to log in and retrieve information about the
roles they are assigned to when you’re using an Access database. ASP.NET 2.0 provides a very conve-
nient platform that handles user authentication and role management for you. However, this framework
works only with SQL Server and not with a Microsoft Access database. To still allow you to log in to the
site when you’re using an Access database, the UserManager class provides the necessary methods.

To see what these classes can do, each of them is discussed in the following sections.

The BlogEntry Class
The BlogEntry class is used to represent a blog post that gets stored in the database and that can be
viewed on the web site. All the interaction with a BlogEntry instance is done by the BlogManager.
Therefore, the BlogEntry class, depicted in Figure 6-4, has only public properties and no methods
(other than its two constructors).

Figure 6-4

The following table lists all of the public properties of the BlogEntry class:

Property Data Type Description

Body String This property holds the text for the blog entry.

CategoryId Integer This indicates to which category the blog entry belongs.

DatePublished DateTime This property holds the date and time the blog entry was
published.

Id Integer This is the unique ID of the blog entry and is assigned by
the database automatically whenever a new item is created.

Title String This is the title of the blog entry as it appears on the
BlogEntries user control.

In addition to these five properties, the BlogEntry class has two constructors. The first, a parameterless
default constructor, is used to create an entirely new BlogEntry instance. The second, an overloaded

171

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 171

version that accepts a BlogEntry instance’s ID as an Integer, is used when an existing BlogEntry is
re-created when it’s being edited. The ID passed to the constructor is stored in the private field_Id and
is made available through the public and read-only property Id. You see both constructors at work later
when the code is discussed in more detail.

Because the BlogEntry class is used only to hold data and cannot perform any operations, another class
is needed that can work with instances of the BlogEntry. That class is the BlogManager.

The BlogManager Class
Quite the opposite of the BlogEntry class, the BlogManager class (see Figure 6-5) has only shared
methods and no properties. It also has one private constructor to prevent calling code from creating
instances of the BlogManager class.

Figure 6-5

As you can see by the method names in Figure 6-5, the BlogManager class is not only responsible for
working with blog entries, but is also capable of retrieving a list of categories. In larger applications it
would be a wise design decision to introduce separate Category and CategoryManager classes, but in
a relatively small application like the Wrox Blog it’s perfectly acceptable to designate one class for multi-
ple tasks.

These methods need some explanation, so the following table describes all of them in more detail:

Method Return Type Description

Public Shared Function DataSet This method returns the latest 15 blog
GetBlogEntries () As entries from the database by calling into
DataSet the BlogManagerDB class.

Public Shared Function DataSet Returns all blog entries in the specified
GetBlogEntries (ByVal category from the database by calling
categoryId As Integer) into the BlogManagerDB class.
As DataSet

Public Shared Function DataSet Returns all blog entries in the specified
GetBlogEntries (ByVal period from the database by calling into
startDate As DateTime, the BlogManagerDB class. If startDate
ByVal endDate As DateTime) and endDate are the same, blog entries
As DataSet are returned for a single day.

172

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 172

Method Return Type Description

Public Shared Function BlogEntry This method retrieves a single BlogEntry
GetBlogEntry (ByVal instance from the database based on the
blogEntryId As Integer) blogEntryId passed to this method. It
As BlogEntry does this by calling GetBlogEntry in

the BlogManagerDB class. Because this
method is only used when editing blog
entries, the code checks if the current user
is a member of the Administrator group
and throws an exception if this isn’t the
case.

Public Shared Function DataSet Returns the available categories as a
GetCategories () As DataSet.
DataSet

Public Shared Sub n/a This method saves a blog entry in the
SaveBlogEntry (ByVal database. This can be a completely new
myBlogEntry As BlogEntry) or an updated blog entry. Just as with

GetBlogEntry, this method checks the
access rights of the current user.

In Figure 6-5 you see the method GetBlogEntries with (+ 2 overloads) behind its name. In the table
describing the methods, you see GetBlogEntries listed three times. Although the name of these three
methods is the same, their argument lists differ. There is a version without arguments, one that accepts
the ID of the category, and one that accepts a start and end date. To avoid cluttering up the class diagram,
these methods have been grouped together under one method name in Figure 6-5. To help you see the
method has overloads, (+ 2 overloads) is put behind the method name.

The class diagram in Figure 6-5 also shows a New method with a little lock icon in front of it. This is the
constructor for the BlogManager class. Because this class exposes only shared methods (that operate on
the class itself, rather than on an instance of the class) the constructor has been hidden by marking it as
private. This makes it impossible for calling code to create new instances of the BlogManager class. All
classes in the App_Code folder for the Wrox Blog except the BlogEntry class follow this pattern and
thus have a private constructor.

The final class in the BusinessLayer folder is the UserManager class, which is discussed next.

The UserManager Class
The ASP.NET 2.0 Framework provides very powerful yet easy-to-use features to manage authentication
and role membership. These features are referred to as the Membership and Role providers. By simply
activating these features in your application’s configuration, the application is able to allow users to log
in and grant them different rights depending on the roles they are assigned to. These providers have one
great shortcoming: They work only with SQL Server and not with another database such as Microsoft
Access. The provider model allows developers to override the behavior of the default providers, so it
is possible to write your own providers that work with an Access database instead of with SQL Server.
Because of the large amount of functionality and methods these providers offer, writing your own

173

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 173

provider can easily be the subject of an entire chapter or book. Because the Wrox Blog doesn’t need all
this functionality, it contains a simple alternative in the form of the UserManager class. This class has a
single method called GetUserRoles (see Figure 6-6) that retrieves the roles for a user.

Figure 6-6

The GetUserRoles method accepts the username and a hash of the user’s password and returns a list
with the roles the user has been assigned to (that is, if the user was found in the database, of course).
These roles are then used by the application to determine the access rights for the user. This method is
used in the Login page that is discussed later.

For the BlogManager and the UserManager classes in the business layer, you’ll find a database counter-
part that ends with DB inside the DataAccess folder. These classes carry out database interaction and are
discussed next.

The Data Access Layer
One of the main design goals for the Wrox Blog was database independence. Because it’s likely you use
this application with a remote host, you can’t know in advance whether that hosts supports SQL Server
2005 or just Microsoft Access. So, the code should work with SQL Server and with a Microsoft Access
database without any modification. When you look at the three classes present in the data access layer,
you won’t be able to see that these can work with multiple databases at the same time. Instead, these
classes expose a single interface with methods that can work with different kinds of databases. This is
made possible by a concept called factories, something you see more about when the code is discussed
later. To understand how this all works, and why this is so great, you need to look a bit at the history of
ASP and ADO.

When the .NET Framework version 1.0 was released, one area that caused a lot of confusion among
developers was the way databases were accessed. In classic ASP — or to be more exact, with classic
ADO — you had a single object model that could work with a wide variety of databases. Simply by pass-
ing a proper connection string to a Connection object you could talk to SQL Server, Access, Oracle, and
other databases. Recordsets retrieved through that connection always worked the same, and exposed the
same set of methods. However, with .NET, things changed drastically. Instead of a generic Connection
or Recordset object, developers were faced with objects bound to specific providers. For example, for
the SQL Server provider, you have a SqlConnection and a SqlDataReader; for the OleDb provider
there is an OleDbConnection and an OleDbDataReader; and so on. The only exception is the DataSet
that, instead of being tied to a specific data provider, is hosted in the general System.Data namespace.
Though these strongly typed objects brought great performance and a rich feature set targeted at the
specific provider, developers wanting to target both SQL Server and Oracle or any other database at the
same time were faced with a huge challenge. To work around this problem, a few methods are available.

174

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 174

First, there is the abstract base class model. In this model, a designer creates an abstract base class (a
class that must be inherited and cannot be instantiated directly) or an interface that supplies the signa-
ture of each of the necessary methods, like GetBlogEntry and GetCategoriesList. Then for each
required database provider a child class is created that inherits from this base class or implements the
appropriate interface. This concrete child class then implements each of the methods defined in the con-
tract of the base class or interface. At run time, the proper child class is instantiated and the appropriate
methods are called. This solution results in good performance because each of the child classes uses the
most appropriate data providers, so the SQL Server implementation of the child class can benefit from
the optimizations found in the SQL Server provider, for example. The downside of this solution is the
amount of code required. For each new database provider, an entirely new child class needs to be cre-
ated and maintained.

Another solution to write database-independent code is to write against the generic interfaces of each of
the important data access objects. Each of the main ADO.NET objects, like a Connection, a DataReader,
and so on, implements a specific interface. The SqlConnection implements IdbConnection, an
OleDbDataReader implements IdataReader, and so on. With this solution, you have to create a method
that returns the proper object type, based on the provider you want to use. This method could look similar
to this:

Public Function GetConnection() As IDbConnection
Select Case GetProviderFromConfiguration()
Case “System.Data.SqlClient”
Return New SqlConnection()

Case “System.Data.OleDb”
Return New OleDbConnection()

End Select
End Function

This method looks up the requested provider from the application’s configuration file, for example, and
returns the appropriate connection type. The biggest downside of this method is that you use the generic
interface shared by all providers. This means you can, by default, only use the common denominator
shared by all providers. It also means that you should modify this code whenever a new provider is
added to the application.

Along come .NET 2.0 and ADO.NET 2.0 with a factories pattern that solves many of these problems.
In a factory pattern, a class is responsible for creating instances of other classes. In the Wrox Blog, the
DbProviderFactories class from the System.Data.Common namespace is used. This class is able
to create instances of other classes that are used to interact with databases. In terms of design, the
ADO.NET factories pattern looks a lot like the generic interface solution you just saw. However, imple-
menting it is now a lot more straightforward. You see the code to actually implement this later in the
section “Writing Provider-Independent Code.”

Even though .NET 2.0 fixes many of the problems related to object instantiation, some impacting differ-
ences between each data provider still exist that make it difficult to write data provider-independent
code. These differences include the use of built-in functions, the capabilities of stored procedures, and
the way parameters are passed to stored procedures. Not all of these problems can be fixed completely,
but with some careful planning and some smart helper code it is possible to work around most of these
limitations. Later in this chapter, when the inner workings of the code are discussed in the data access
layer, you see the code responsible for these workarounds.

175

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 175

Now that you have some background on the design goals and decisions made for the data access layer
of the Wrox Blog, take a look at the actual classes defined in this layer. Because the BlogEntry class in
the business layer does not have its own behavior, you’ll see no BlogEntryDB class in the data access
layer. Instead, all interaction with the database to get information about blog entries and to save them is
carried out by the BlogManagerDB class.

The BlogManagerDB Class
The BlogManagerDB class has the exact same methods as the BlogManager class. However, the
BlogManagerDB class is responsible for actually getting the requested data from and into the database.
The BlogManagerDB class does not only work with blog items or lists of entries; it’s also responsible for
getting a list with the available blog categories from the database.

Figure 6-7 lists the four methods and the private constructor defined in this class.

Figure 6-7

Each of these methods and their overloads, except the constructor, are discussed in the following table:

Method Return Type Description

Public Shared Function DataSet This method returns the latest 15 blog entries
GetBlogEntries () As from the database, again by calling a stored
DataSet procedure or query.

Public Shared Function DataSet Returns all blog entries in the specified
GetBlogEntries (ByVal category from the database.
categoryId As Integer)
As DataSet

Public Shared Function DataSet Returns all blog entries in the specified period
GetBlogEntries (ByVal from the database. If startDate and endDate
startDate As DateTime, are the same, entries are returned for a single
ByVal endDate As day.
DateTime) As DataSet

Public Shared Function BlogEntry This method retrieves a single BlogEntry
GetBlogEntry (ByVal instance from the database based on the
blogEntryId As blogEntryId passed to this method. It does
Integer) As BlogEntry this by calling a stored procedure (or query) in

the database. The procedures used in the data
access layer are discussed later.

176

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 176

Method Return Type Description

Public Shared Function DataSet Returns the available categories as a DataSet.
GetCategories () As
DataSet

Public Shared Sub n/a This method saves a blog entry in the
SaveBlogEntry (ByVal database. This can be a completely new or an
myBlogEntry As updated blog item.
BlogEntry)

To simplify the data access code so it can work with multiple databases, there is also a DalHelpers class
(see Figure 6-8) that serves as a helpers class for the data access layer (DAL). This class has a single
method called ReturnCommandParamName.

Figure 6-8

The ReturnCommandParamName method accepts the name of a parameter that must be passed to a stored
procedure (in SQL Server) or a query (in Microsoft Access) and returns the correctly formatted parameter
name. For SQL Server this is the name prefixed with an at symbol (@), whereas for Access this is a single
question mark symbol (?) without the initial name. You see later why and how this code is used.

The UserManagerDB Class
Just as the UserManager class in the business layer, the UserManagerDB class has a single method called
GetUserRoles, as shown in Figure 6-9.

Figure 6-9

To simplify the code to log in a user, the traditional LoginUser and GetRoles methods have been com-
bined into one method. The GetUserRoles method functions as a LoginUser method in that it accepts
the user’s name and a hashed password. It then returns the roles for the user as an ArrayList if the user
is found in the database, or Nothing otherwise.

177

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 177

The Data Model
Because the Wrox Blog can work with SQL Server and a Microsoft Access database, you’ll find both
these databases in the App_Data folder if you installed the application with the supplied installer. It
should come as no surprise that both databases have a similar data model. Figure 6-10 shows the
database model for SQL Server 2005 as it looks in Visual Web Developer.

Figure 6-10

The BlogEntry table contains five columns, each of which is described in the following sections. Note
that the table lists both the data type for each column in SQL Server and in Microsoft Access.

The BlogEntry Table
The BlogEntry table stores the blog entries for the entire application. It should come as no surprise that
this table has five columns that exactly map to each of the five public properties of the BlogEntry class.
These five columns are discussed in the following table.

Column Name Data Type SQL Data Type Description
Server Microsoft Access

Id int (Identity) AutoNumber The unique ID of each blog
entry. This ID is generated
automatically by the database
each time a new record is
inserted.

Title nvarchar(200) Text (200) The title of the blog item.
The title is displayed in the
BlogEntries list.

Body nvarchar(MAX) Memo Used to store the body text of
the blog entry.

CategoryId int Number The ID of the category to
which the item belongs.

DatePublished datetime Date/Time Stores the date and time the
blog item was published.

Each record in the BlogEntry table is linked to a specific category in the Category table through its
CategoryId column.

178

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 178

The Category Table
The Category table is a simple lookup table that holds an ID and a description for each category.

Column Name Data Type Data Type Description
SQL Server Microsoft Access

Id int(Identity) AutoNumber The unique ID of each category. This
ID is generated automatically by the
database each time a new record is
inserted.

Description nvarchar(100) Text (100) The description of the category as it
is displayed in the BlogEntries-
Filter user control on the site.

The code in the business and data access layers is only used to insert and update blog items and to
retrieve a read-only list of categories. If you want to manage the categories in the database with a web
interface, you need to implement some CMS functionality, similar to that presented in Chapter 5.

Stored Procedures and Queries
To make the data access layer easier to write and maintain, it does not contain direct SQL statements.
Instead, the code calls stored procedures (when SQL Server is used) or queries (in Microsoft Access) to
get the data from and into the database. To a large extent, stored procedures and queries can perform the
same actions. In the case of the Wrox Blog, they are used to select single and lists of records from the
BlogEntry and Category tables, and to insert and update records in the BlogEntry table. You need to be
aware of a few differences between the two types when you try to write provider-independent code.
Take a look at the following snippet, which shows the stored procedure required to insert a new item in
the BlogEntry table in SQL Server:

CREATE PROCEDURE sprocBlogEntryInsertSingleItem

@title nvarchar(200),
@body nvarchar(MAX),
@categoryId int,
@datePublished datetime

AS

INSERT INTO
BlogEntry
(
Title, Body, CategoryId, DatePublished

)
VALUES
(
@title, @body, @categoryId, @datePublished

)

179

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 179

The same code in an Access query looks like this:

INSERT INTO
BlogEntry (Title, Body, CategoryId, DatePublished)
VALUES (?, ?, ?, ?);

As you can see, for a stored procedure you need to declare each parameter and its type explicitly. In an
Access query, all you need to do is supply a question mark at the places where you want to insert a
parameter. Sometimes when you save a query in Microsoft Access, it adds square brackets around the
question mark parameter placeholders, causing the application to break. When this happens, remove the
brackets and save the query again.

In addition to the name, the order in which parameters are sent to the database is important as well. SQL
Server uses named parameters, so it doesn’t care in which order the parameters are added. However,
since Access has no way to figure out to which parameter you are referring because they all have the same
name (only a question mark), you must pass the parameters in the order that the query expects them. In
the preceding example, you’d need to pass the Title first, then the Body, the CategoryId, and finally
the DatePublished.

In addition to these two tables that are present in both databases, the Microsoft Access database also has
three tables to store users, roles, and the roles to which the users are assigned. The names of these tables
match those in the SQL Server database that are created by the .NET 2.0 Framework.

Helper Classes
The final class that is hosted in the special App_Code folder is called AppConfiguration (see Figure
6-11). It has three read-only and shared properties called ConnectionStringSettings, EmailFrom,
and EmailTo.

Figure 6-11

The ConnectionStringSettings property provides access to the active connection used in the applica-
tion. This property plays a vital role in accessing different types of databases and is examined in great
depth in the next section.

The other EmailFrom and EmailTo properties are used for sending e-mails with error information. You
see where they are used exactly later in this chapter.

180

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 180

Code and Code Explanation
In this section you learn how all the different parts of the Wrox Blog, including the user controls Blog
Entries and BlogEntriesFilter and the code in the App_Code folder, work and interact together.
This section begins with some important files that are used by the entire application and then discusses
the Controls folder that contains the user controls.

Root Files
Before dissecting the user controls and their code-behind that make up the largest part of the Wrox Blog,
you should first look at the few files that are located in the root of the site. These files play an important
role in authenticating a user. As stated previously, the ASP.NET run time takes care of user authentication
and role membership when a SQL Server database is used. To accommodate for Microsoft Access as well,
you need to write some custom code that authenticates a user and stores the roles the user is assigned to
in a cookie so the roles are available to other pages throughout the lifetime of the user’s session. Even
though this authentication solution requires some custom code, you can still make use of the many available
.NET classes.

Web.config
Just as with other ASP.NET applications, the Web.config file in the Wrox Blog is used for settings that
apply to the entire application. In the Wrox Blog, this file contains a few important settings. At the top of
that file, you’ll find an <appSettings> key called DefaultConnectionString. The value of this key
contains the name of one of the two connection strings defined in the same file. Both settings are used in
the data access layer and are discussed later. The EmailFrom and EmailTo keys are used when sending
error messages, described near the end of the chapter. Similar to the previous chapter, the
FCKeditor:UserFilesPath key holds the path to the folder where files uploaded with the FCKeditor
are stored.

Further down in the Web.config file, you also see two nodes called <membership> and <roleManager>.
These nodes set up the membership and role providers for use with SQL Server, similar to those you saw
in the previous chapter. On the roleManager node you see an important attribute called enabled.
When this attribute is set to true, the Wrox Blog assumes that the ASP.NET authentication scheme is
used, and will not attempt to authenticate the user manually but instead use the SQL Server database for
authentication. When the attribute is false, the code in the Login.aspx page overrides the default login
behavior and fires the custom code to authenticate the user against the Microsoft Access database.

Login.aspx
The markup of this file contains a small bit of HTML and a single Login control. Normally, this control
takes care of authenticating a user against a SQL Server database using the built-in providers. However,
in the Authenticate event of this control you’ll see some code that overrides this behavior when the
role manager is not enabled and fires when the user tries to log in. To ensure the custom code in the
Authenticate event runs only when the Access database is in use, the following code in the Page_Load
event dynamically hooks up the Authenticate event to the Login1_Authenticate method:

181

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 181

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load

If Page.IsPostBack AndAlso Roles.Enabled = False Then
AddHandler Login1.Authenticate, AddressOf Login1_Authenticate

End If
End Sub

When Roles are enabled for the application, the code in the If block won’t run, allowing ASP.NET to fire
its own code to authenticate a user against a SQL Server database. If Roles are disabled, this code causes
the Authenticate event to fire the code defined in the Login1_Authenticate event handler.

The code inside that event handler retrieves the roles for the current user and stores them in an encrypted
cookie. On subsequent requests to pages in the site, these roles are retrieved from the cookie again and
assigned to the current user. This way, you have to access the database for role information only once,
which greatly enhances the performance of your site. The code responsible for retrieving and storing the
roles looks like this:

If Roles.Enabled = False Then

Dim userName As String = Login1.UserName
Dim passwordHash As String = _

FormsAuthentication.HashPasswordForStoringInConfigFile(_
Login1.Password, “MD5”)

Dim userRoles As ArrayList = UserManager.GetUserRoles(userName, passwordHash)
‘ The rest of the code is shown later

First, the code checks to see if roles are enabled for this application. This is controlled by the Enabled
attribute on the roleManager element in the Web.config file. When this attribute is False, it is assumed
that not SQL Server but a Microsoft Access database is used and that the custom authentication code
should fire.

The username and password are retrieved from the standard Login control. This is a good example of
mixing the available ASP.NET 2.0 functionality with custom code. Instead of writing a login page from
scratch, you simply drop a Login control on your page, and overwrite the Authenticate event, while
you still have access to the control’s UserName and Password properties.

Passwords are not stored as plain text in the database; instead, only a hash of the password is saved. To
compare that hash to the password the user entered, that password must be hashed as well using
FormsAuthentication.HashPasswordForStoringInConfigFile. To create a hash for a password
when you want to create a new user in the database, you can use that same method.

The username and password are then sent to the GetUserRoles method in the UserManager class. This
method in turn sends them to the GetUserRoles method in the UserManagerDB class that tries to
retrieve the roles for the user from the database. When the user is found and has roles assigned, those
roles are returned as an ArrayList; otherwise the method returns Nothing. You see exactly how this
method accesses the database in the section “Writing Provider-Independent Code” later in the chapter.
The query that’s responsible for retrieving the roles looks like this:

SELECT
aspnet_Roles.Description

FROM

182

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 182

aspnet_Users INNER JOIN (aspnet_Roles INNER JOIN aspnet_UsersInRoles ON
aspnet_Roles.Id=aspnet_UsersInRoles.RoleId) ON
aspnet_Users.Id=aspnet_UsersInRoles.UserId

WHERE
aspnet_Users.UserName=? And aspnet_Users.PasswordHash=?;

This query links the Users, Roles, and UsersInRoles tables together and returns the description of each
role the user is assigned to. It uses a WHERE clause to filter the list to only the specified user and password
hash. If the username or password is incorrect, no records are returned; otherwise a list with one or more
role names is returned from the query.

Remember, you’ll find this query only in the Access database. For SQL Server, the ASP.NET run time takes
care of user authentication and role membership.

The GetUserRoles method in the UserManagerDB class passes the results up to the UserManager class,
which returns the results to the calling code in the Login page where the remainder of the Authenticate
event fires:

If userRoles IsNot Nothing Then
Dim userData As String = String.Empty
For Each myRole As String In userRoles
userData &= myRole & “,”

Next
userData = userData.TrimEnd(“,”c)

Dim ticket As New FormsAuthenticationTicket(_
2, _
userName, _
System.DateTime.Now, _
System.DateTime.Now.AddMinutes(30), _
Login1.RememberMeSet, _
userData, _
FormsAuthentication.FormsCookiePath)

Dim encTicket As String = FormsAuthentication.Encrypt(ticket)

Response.Cookies.Add(New HttpCookie(_
FormsAuthentication.FormsCookieName, encTicket))

Response.Redirect(FormsAuthentication.GetRedirectUrl(userName, True))
Else
e.Authenticated = False

End If
End If

If the GetUserRoles method did not return Nothing (which means the user was found and had roles
assigned) the ArrayList is used to build up a comma-separated list of roles. This list is then added to
the userData field of a FormsAuthenticationTicket, a class that is used to create a wrapper around
critical information for authentication that can be stored in a cookie. Its constructor expects a version
number, the name of the user, the start and expiration date of the authentication period, a Boolean to
indicate whether to create a persistent cookie, and the path to which the cookie should apply.

183

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 183

As the second-to-last parameter, the constructor also expects a userData parameter. In this parameter
you can store user-related data that is saved with the cookie and can be retrieved on subsequent
requests. In the preceding code, the comma-separated list of role names is stored in the cookie. These
role names are retrieved later inside the Global.asax files and assigned to the user again.

When the ticket has been constructed, it’s encrypted with the Encrypt method of the Forms
Authentication class and stored in a cookie. At the end of the code, the user is redirected to the page he
initially requested, or to the default homepage using GetRedirectUrl.

If authentication failed because the username or password were incorrect or the user did not have any
roles assigned, the Authenticated property of the AuthenticateEventArgs parameter is set to
False. This ensures that the Login control displays an error message to the user, saying that the login
attempt failed.

Global.asax
The Global.asax file is responsible for retrieving the roles from the cookie that has been created by the
Login page. Inside the Global file, you can write code for the Application_AuthenticateRequest
event that is triggered for each request to the site. It fires before any code in the page itself runs, so it’s a
perfect location to retrieve the roles from the cookie and assign them to the user:

Sub Application_AuthenticateRequest(ByVal sender As Object, ByVal e As EventArgs)
If User IsNot Nothing AndAlso User.Identity.IsAuthenticated Then
If System.Web.Security.Roles.Enabled = False Then
Dim id As FormsIdentity = CType(User.Identity, FormsIdentity)
Dim ticket As FormsAuthenticationTicket = id.Ticket

Dim roleAsString As String = ticket.UserData
Dim roles() As String = roleAsString.Split(New Char() {“,”})
Context.User = New GenericPrincipal(Context.User.Identity, roles)

End If
End If

End Sub

The code first checks if the User object exists and is authenticated. It also checks if the role manager is
enabled, because when it is, ASP.NET takes care of role management and this custom code doesn’t need
to run.

If all these conditions are met, the FormsAuthenticationTicket is retrieved from the current user’s
Identity. ASP.NET handles all the steps required to create this identity and to retrieve and decrypt the
cookie. Once the ticket is stored in a local variable, the comma-separated string with the role names can
be retrieved from the UserData property. This string is then converted to an array using the Split
method and assigned to the user for the current request by creating a new GenericPrincipal and
passing the array of roles to its constructor.

Once the code in this event has finished, you can check whether a user is in a specific role with the
following code:

If Context.User.IsInRole(“Administrator”) Then
‘ Run code for an Administrator

End If

184

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 184

The Global.asax file contains another method called Application_Error that is used to send application
errors by e-mail. This method is discussed a bit later, but first you need to look at how you can write
provider-independent code.

Writing Provider-Independent Code
In the discussion of the Login page you saw the GetUserRoles method in the UserManagerDB class.
The discussion of how the database is accessed was skipped, so you could focus on the authentication
mechanism instead. However, now is the time to look at that method in great detail because the concepts
used in this method are used in all the data access code. The following code block lists the entire
GetUserRoles function, which is then discussed line by line:

Public Shared Function GetUserRoles(_
ByVal userName As String, ByVal passwordHash As String _
) As ArrayList

Dim myFactory As DbProviderFactory = _
DbProviderFactories.GetFactory(_
AppConfiguration.ConnectionStringSettings.ProviderName)

Dim myConnection As DbConnection = myFactory.CreateConnection

myConnection.ConnectionString = _
AppConfiguration.ConnectionStringSettings.ConnectionString

myConnection.Open()

Dim myCommand As DbCommand = myConnection.CreateCommand()

myCommand.CommandText = “sprocUserGetRoles”
myCommand.CommandType = CommandType.StoredProcedure

Dim param As DbParameter
param = myCommand.CreateParameter()
param.ParameterName = DalHelpers.ReturnCommandParamName(“userName”)
param.DbType = DbType.String
param.Value = userName
myCommand.Parameters.Add(param)

param = myCommand.CreateParameter()
param.ParameterName = DalHelpers.ReturnCommandParamName(“passwordHash”)
param.DbType = DbType.String
param.Value = passwordHash
myCommand.Parameters.Add(param)

Dim arrRoles As ArrayList = Nothing

Dim myDataReader As DbDataReader = myCommand.ExecuteReader(_
CommandBehavior.CloseConnection)

If myDataReader.HasRows Then
arrRoles = New ArrayList()
Do While myDataReader.Read()

185

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 185

arrRoles.Add(myDataReader.GetString(_
myDataReader.GetOrdinal(“Description”)))

Loop
End If

Return arrRoles
End Function

Right below the function header, you see code that creates a variable of type DbProviderFactory that gets
a value by calling GetFactory on the DbProviderFactories class. You can see this DbProviderFactory
as a class this is capable of creating different instances of database-related objects like connections and
commands. To tell it what kind of object you want to create (such as a SqlConnection or an OleDb
Connection) you need to pass it a ProviderName. If you’re targeting SQL Server, you should pass it
System.Data.SqlClient, and for an Access database you should pass System.Data.OleDb.

When you think about how you want to pass the right ProviderName to this method, your first idea might
be to store it in the Web.config with a key like DefaultProvider. Then you can use Configuration
Manager.AppSettings.Get(“DefaultProvider”) to get the provider name from the Web.config file
and pass it to the constructor of the factory. Although this would certainly work, ASP.NET 2.0 offers a
much more elegant solution to the problem. This is where the ConnectionStringSettings property in
the custom AppConfiguration class comes in. In .NET 1.x the only way to store a connection string was
to add it to the general <appSettings> section in the Web.config. ASP.NET 2.0, however, has a new
<connectionStrings> element available in the Web.config file that allows you to get strongly typed
information about the chosen connection. Take a look at the ConnectionStringSettings property to see
how this works:

Public Shared ReadOnly Property ConnectionStringSettings() As _
ConnectionStringSettings

Get
Dim connectionStringKey As String = _

ConfigurationManager.AppSettings.Get(“DefaultConnectionString”)
Return ConfigurationManager.ConnectionStrings(connectionStringKey)

End Get
End Property

This code first retrieves the default connection string key from the database. This is a custom key defined
in the Web.config file that can hold either SqlServerConnectionString (for the SQL Server connection)
or AccessConnectionString (for the Access database connection). This key is then used to retrieve the
connection string settings that belong to that key. The ConnectionStringSettings class exposes both
the ConnectionString and the ProviderName, provided that you supplied that name on the connection
string in the Web.config file. Both connection strings in the Web.config file have that name set. Here’s how
the connection string for SQL Server with the providerName attribute looks:

<add name=”SqlServerConnectionString” connectionString=”server=(local)\SqlExpress;
AttachDbFileName=|DataDirectory|Blog.mdf;Integrated Security=true;
User Instance=true” providerName=”System.Data.SqlClient”

/>

If you look at the code that instantiates the factory, you’ll see how it all fits together:

Dim myFactory As DbProviderFactory = _
DbProviderFactories.GetFactory(_
AppConfiguration.ConnectionStringSettings.ProviderName)

186

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 186

Imagine that in the Web.config file the DefaultConnectionString key is set to SqlServerConnection
String. Then the ConnectionStringSettings property of the AppConfiguration class returns a
reference to the connection with the name SqlServerConnectionString in the Web.config file. This
connection in turn has a providerName of System.Data.SqlClient. Passing this provider name to the
GetFactory method tells it you want it to instantiate objects that are part of the SQL Server provider, like
the SqlConnection and SqlCommand objects.

Note that you cannot pass arbitrary provider names to the factory. Each data provider that is present on
your system should register itself in the machine.config file for your server. Only those providers that
are registered can be created by the factory.

Once the factory has been created, creating an instance of a provider object is as simple as calling a
method:

Dim myConnection As DbConnection = myFactory.CreateConnection()

myConnection.ConnectionString = _
AppConfiguration.ConnectionStringSettings.ConnectionString

myConnection.Open()

This code uses CreateConnection to create a connection object. If the DefaultConnectionString is
set to SqlServerConnectionString, the variable myConnection now holds a SqlConnection. If the
application was configured to use the Access database instead, the connection would be of type
OleDbConnection.

Once the connection is created, it’s opened with the connection string that is also retrieved from the
ConnectionStringSettings property.

Dim myCommand As DbCommand = myConnection.CreateCommand()

myCommand.CommandText = “sprocUserGetRoles”
myCommand.CommandType = CommandType.StoredProcedure

The next step is to create a command object and assign it a CommandText and a CommandType. This is
similar to data access code you saw in previous chapters.

To pass both the username and password to the query, two parameter objects are created with the
CreateParameter method:

Dim param As DbParameter
Param = myCommand.CreateParameter()
param.ParameterName = DalHelpers.ReturnCommandParamName(“userName”)
param.DbType = DbType.String
param.Value = userName
myCommand.Parameters.Add(param)

Again, this code is very similar to code you saw before. What is different, though, is the way the parameter
name is set up. You’ll recall from earlier in the chapter that SQL Server uses an at symbol (@) in front of the
parameter name, whereas Access doesn’t use the name at all but only uses a question mark. The Return
CommandParamName method in the DalHelpers class takes care of that:

187

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 187

Public Shared Function ReturnCommandParamName(_
ByVal paramName As String) As String

Dim returnValue As String = String.Empty
Select Case AppConfiguration.ConnectionStringSettings.ProviderName.ToLower()
Case “system.data.sqlclient”
returnValue = “@” & paramName

Case “system.data.oledb”
returnValue = “?”

Case Else
Throw New NotSupportedException(“The provider “ & _

AppConfiguration.ConnectionStringSettings.ProviderName & _
“ is not supported”)

End Select
Return returnValue

End Function

This method simply looks at the current provider name and formats the parameter accordingly. Given
the example of the userName parameter, this function returns @userName for SQL Server and only ? for
an OleDb connection. When an unknown provider is encountered, an error is thrown.

The remainder of GetUserRoles opens a DataReader to see if the query returned any roles and then
adds them to an ArrayList, which is returned at the end of the function.

Once you understand how the GetUserRoles method works, you’ll have no trouble understanding all the
other methods in the data access layer. All those methods use the same principle to instantiate connection,
command, and datareader objects. The only differences you’ll see in those methods are related to what the
method must do. Some of these differences are discussed in the next section, which deals with the two user
controls that make up the Wrox Blog application.

The Controls Folder
To make it easy to plug the Wrox Blog into an existing application, the presentation layer of the application
consists of only user controls. The code download for this application comes with a Login.aspx page and a
Default.aspx as well, but those are only used to demonstrate how the blog is incorporated in an existing
site. If you want to use the blog application in your site, all you need is the two user controls from the
Controls folder, the code in the App_Code folder, and some helper assets — such as the Css and FCKeditor
folders — and some settings from the Web.config file. Refer to the section “Setting up the Wrox Blog” later
in the chapter to find out more about installing the blog application.

The Controls folder contains two user controls called BlogEntriesFilter.ascx and BlogEntries.ascx. The
first control allows a user to select specific entries using the calendar or the category list. The other control
presents the selected blog items and allows you to edit them. Because the filter criteria selected in the
BlogEntriesFilter control are used to determine the items displayed in the BlogEntries, the filter
control is discussed first.

BlogEntriesFilter.ascx
The only purpose of the BlogEntriesFilter user control is to allow users to select a period of time
(either a single date or an entire week) or a category for which they want to see blog entries. Once the
criteria are known, the user control adds those criteria to the query string and reloads the current page.
The BlogEntries control then looks at these parameters and loads the correct list of blog entries.

188

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 188

The user has two options to select the criteria. At the top of the BlogEntriesFilter control you find an
<asp:Calendar> control that allows you to select a single date or an entire week. The latter is made
possible by setting the control’s SelectionMode property to DayWeek. This draws a greater-than symbol
in front of each week’s row.

When a new date or week has been chosen, the calendar fires its SelectionChanged event that then
executes the following code:

If calBlogEntries.SelectedDates.Count > 0 Then
Dim startDate As DateTime = calBlogEntries.SelectedDates(0)
Dim endDate As DateTime = _

calBlogEntries.SelectedDates(calBlogEntries.SelectedDates.Count - 1)

Dim queryString As String = String.Empty

If Request.QueryString.Count > 0 Then
queryString = Server.UrlDecode(Request.QueryString.ToString())
If Request.QueryString.Get(“startDate”) IsNot Nothing Then
queryString = queryString.Replace(“startDate=” & _

Request.QueryString.Get(“startDate”), “startDate=” & _
startDate.ToShortDateString())

Else
queryString &= “&startDate=” & startDate.ToShortDateString()

End If
If Request.QueryString.Get(“endDate”) IsNot Nothing Then
queryString = queryString.Replace(“endDate=” & _

Request.QueryString.Get(“endDate”), “endDate=” & _
endDate.ToShortDateString())

Else
queryString &= “&endDate=” & endDate.ToShortDateString()

End If
Else
queryString = String.Format(“startDate={0}&endDate={1}”, _

startDate.ToShortDateString(), endDate.ToShortDateString())
End If

Response.Redirect(Request.CurrentExecutionFilePath & “?” & queryString)
End If

This code first ensures that at least one date is selected on the calendar. It then creates two variables
called startDate and endDate, both of which are retrieved by looking at the SelectedDates property.
This property exposes the selected dates as an array of DateTime objects in sorted order. To get at the
last element in the array, the end date selected on the calendar, SelectedDates.Count -1, is used.

The remainder of the code in this method is responsible for assigning the startDate and endDate to a
variable called queryString. Because the user control BlogEntriesFilter can be used in pages that
use their own query string parameters, you can’t just replace the entire query string with the start and
end dates. Instead, this code first assigns the entire query string to the queryString variable. Then
when there is already a start date variable present (possibly from an earlier selection on the calendar), its
value is replaced with the newly selected date. If the query string variable wasn’t present, it is added to
the queryString variable instead. To see how this works, take a look at the following two examples.

189

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 189

First, imagine the current query string is something like this:

id=123&someVariable=456

The code then sees that there is already a query string but it doesn’t contain a start date. This means the
startDate parameter is added so the queryString variable ends up like this:

id=123&someVariable=456&startDate=12/12/2005

Now imagine that this page is loaded again so it now contains the start date. When the user selects a
different date, such as 12/5/2005, the code in SelectionChanged sees there is already a startDate
present so instead of appending it to queryString, it replaces its value, like this:

id=123&user=456&startDate=12/5/2005

This ensures that any existing queryString variable remains intact while the startDate variable sim-
ply has its value updated with the new date.

The same process is used to get the value of the endDate into the queryString variable. Once the entire
query string has been set up, the page is reloaded by redirecting to Request.CurrentExecution
FilePath, which returns the name of the current page, and appends the queryString variable to it.

The other method that allows users to choose the blog entries they want to see is with the list of categories
in the BlogEntriesFilter control. This list, implemented as a simple <asp:Repeater> control, displays
the available categories that are linked to the current page with the ID of the category in the query string.
That Repeater control has a HeaderTemplate and a FooterTemplate that start and close a simple
HTML tag. The ItemTemplate then defines a item for each category like this:

<asp:HyperLink ID=”hyperCategory” runat=”server”
NavigateUrl=’<%#GetNavigateUrl(Eval(“Id”)) %>’
Text=’<%#Eval(“Description”) & “ (“ & Eval(“NumberOfBlogEntries”) & “)” %>’ />

Inside the Page_Load method this Repeater control gets its data by calling GetCategories() in the
BlogManager class like this:

repCategories.DataSource = BlogManager.GetCategories()
repCategories.DataBind()

The BlogManager class then delegates its responsibility to the BlogManagerDB class to get the categories
from the database. That method calls the stored procedure or query called sprocCategorySelectList
with code very similar to the code you saw for GetUserRoles earlier in this chapter.

Once the data gets bound to the control with DataBind(), the GetNavigateUrl method is called for
each item. This method is defined in the code-behind for the BlogEntriesFilter control and works
pretty much the same as the SelectionChanged code for the Calendar in that it tries to find a CategoryId
in the query string and then tries to replace its value. If the variable is not found, the value for CategoryId
is appended to the queryString variable in exactly the same way as is done with the startDate and
endDate variables. What’s different, though, is that this code also removes any date variables from the
query string. The BlogEntries user control you see later looks at the date variables first. When they are
present, it uses those to get the requested blog entries. This means that if you want to displays entries
from a certain category, you have to remove all traces of the date variables from the query string.

190

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 190

The final thing you need to look at in the BlogEntriesFilter list is the code for Page_Load. This code
first tries to retrieve the start date and end date from the query string. If they are there, a loop is set up
that preselects the dates between the start date and the end date:

While endDate >= startDate
calBlogEntries.SelectedDates.Add(startDate)
startDate = startDate.AddDays(1)

End While

While endDate is still larger than startDate, the date held in startDate is selected on the calendar.
The variable startDate is then increased by one day and the loop continues. This makes all dates
between the start and end date appear as selected on the calendar, so it’s easy for users to see which date
or period they selected.

With the filter control set up, it’s time to look at the BlogEntries user control that is responsible for dis-
playing the selected blog entries.

BlogEntries.ascx
This user control is used for two distinct tasks: It can display a list with blog items for the requested cate-
gory or period and it allows an administrator to add new or edit existing entries. To provide a clean
interface to the end-user of the application, the page is split up using two <asp:Panel> controls. The
first displays the list of blog posts; the other provides a form where an administrator can create new or
edit existing posts. At any given time, only one of the two panels is visible.

Showing Blog Entries
The first panel, called pnlBlogEntries, displays a label telling the user how many blog entries were
found. It also has a DataList control that displays all the blog entries returned from the database:

<asp:DataList ID=”dlBlogEntries” runat=”server” Width=”100%”>
<ItemTemplate>
<div class=”ItemHeading”><h3>
<%#Convert.ToDateTime(Eval(“DatePublished”)).ToLongDateString() + “ at “ +

Convert.ToDateTime(Eval(“DatePublished”)).ToLongTimeString()%>
</h3></div>
<h2><%#Eval(“Title”)%>
<asp:LinkButton id=”lnkEdit” runat=”server” CommandName=”Edit”
Text=”(Edit This Entry)” CssClass=”EditLink”
CommandArgument=’<%#Eval(“Id”)%>’ Visible=’<%#CanEdit()%>’>

</asp:LinkButton></h2>
<div class=”BlogEntryText”><asp:Literal ID=”litBodyText” runat=”server”

Text=’<%#Eval(“Body”) %>’></asp:Literal></div>
</ItemTemplate>

</asp:DataList>

This template displays a small <h3> tag with the date and time the entry was posted. This is followed by
an <h2> tag that displays the title of the blog item. After the title an Edit This Entry link is displayed.
The visibility of that link is determined by the property CanEdit that you’ll find in the code-behind for
the user control. This property returns True when the user has been assigned to the Administrator role
or False otherwise. You should also notice the CommandArgument property of the Edit link. This is used
later in the editing process to determine which entry must be edited.

191

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 191

The DataList control gets its data from the LoadData method in the user control. This method looks at
the query string to see which entries to load. The blog entries can be retrieved from the database in three
ways: either by a start and end date, a category ID, or with no filter criteria at all. The code first tries to
find out if there is a query string called StartDate. If there is, both the startDate and endDate
variables get a value and the overloaded version of GetBlogEntries that accepts two dates is called.

If there is no StartDate query string but there is one for the CategoryID, another overloaded version of
GetBlogEntries is called that gets passed the ID of the chosen category. Finally, if there is no query
string at all, the parameterless version of GetBlogEntries is called that retrieves the latest 15 blog
entries from the database.

The three overloaded versions of GetBlogEntries share a lot of code, so you’ll see the one that accepts
two dates only. The code starts off with creating a DbProviderFactory, a connection, and a command
object in exactly the same way as in the GetUserRoles method you saw earlier. Once those objects are
created, two parameters are created for the start and the end date, using ReturnCommandParamName to
get the proper parameter names.

A little trick was deployed for the endDate parameter. As you recall, the end date is ultimately retrieved
from the calendar when the user selects a new date or period. This date does not contain a time part so
when a new DateTime object is created from the query string value, its time part defaults to 12 midnight.
However, the stored procedure that gets the blog entries from the database, called sprocBlogEntry
SelectListByDate, uses BETWEEN to select the right BlogEntry records like this:

-- SELECT list and FROM clause go here

WHERE
(BlogEntry.DatePublished BETWEEN @startDate AND @endDate)

Now, imagine that startDate is 12/12/2005 and endDate is 12/18/2005. Because the endDate
defaulted to 12 midnight, this query does not return blog entries that have been created on December
the 18after midnight. To make sure that entries are retrieved that have been created somewhere during
the day, one day is added to the endDate parameter like this:

param.Value = endDate.AddDays(1)

This ensures that all blog posts with a creation date less than December 19th at midnight are returned,
which includes all entries created on the 18th.

Once the parameters have been set up correctly, a new DataAdapter is created with the CreateData
Adapter method. This adapter then fills a DataSet, which is returned to the calling code like this:

Dim myDataAdapter As DbDataAdapter = myFactory.CreateDataAdapter()
myDataAdapter.SelectCommand = myCommand
myDataAdapter.Fill(myDataSet)
myConnection.Close()
Return myDataSet

The two other overloaded versions of GetBlogEntries that retrieve blog posts for a specific category or
the latest 15 posts work pretty much the same way. The biggest differences are the parameters that are
set up and the name of the stored procedure that gets the data from the database.

192

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 192

The DataSet returned from GetBlogEntries is ultimately assigned to the DataSource property of the
DataList control in the BlogEntries user control that is then responsible for displaying all the
selected blog posts on the web page.

Depending on the type of filter chosen, the LoadData method sets up the text for the lblResults label.
When a period of time was chosen, the label displays something like, “Below you find blog entries posted
between 12/12/2005 and 12/18/2005.” When a category was selected in the BlogEntriesFilter, the
label displays the name of the chosen category by looking at the Description column of the first record
returned from the database:

lblResults.Text = “Below you find blog entries posted in the category “ & _
myDataSet.Tables(0).Rows(0)(“Description”).ToString() & “.”

When no filter has been chosen, and the blog list just displays the most recent entries, the label is filled
as follows:

lblResults.Text = “Below you find the latest “ & myDataSet.Tables(0).Rows.Count & _
“ blog entries posted on the site.”

This concludes the discussion of displaying blog posts with the user control. The final part you need to
look at is managing blog posts as an administrator.

Managing Blog Entries
If you are a member of the Administrator role you have two ways to manage blog entries. The first is
with the Create New Entry button that allows you to create a new blog entry. The other way is with the
Edit This Entry link that appears after each published entry. Both the Create New Entry button and the
Edit link become visible automatically when you’re logged in as an Administrator.

In both scenarios editing is done in the panel pnlAddEditBlogEntry that is hidden until you click the
New button or the Edit link. This panel contains a few controls that allow you to enter details about an
entry, such as its title, the body text, a category, and the publication date. This form looks very similar to
the one you used in the previous chapter to manage content in the Wrox CMS. It also features the
FCKeditor to allow you to enter rich content for the body text of the entry.

If you click the Create New Entry button, the following code in the code-behind fires:

Protected Sub btnCreateNewBlogEntry_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnCreateNewBlogEntry.Click

pnlAddEditBlogEntry.Visible = True
pnlBlogEntries.Visible = False
txtTitle.Text = “”
txtBody.Value = “”
lstCategory.SelectedIndex = -1
calDatePublished.SelectedDate = DateTime.Now.Date
ViewState(“EditingId”) = Nothing

End Sub

This code hides the List panel and shows the Edit panel. It also clears the form controls that may still
have a value from a previous edit action. To make it easier for a user to post a new blog entry, the
SelectedDate on the calendar is set to today’s date. Of course you can still choose a different date if
you want.

193

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 193

The drop-down for the categories deserves a close examination:

<asp:DropDownList ID=”lstCategory” runat=”server”
DataSourceID=”ObjectDataSource1” DataTextField=”Description”
DataValueField=”Id”>

</asp:DropDownList>

To get a list with categories, the drop-down has its DataSourceID set to an ObjectDataSource control
defined at the end of the page. An ObjectDataSource works similarly to a SqlDataSource control you
saw in earlier chapters in that it can retrieve data from a data source that can be used by a control like
the drop-down list. It’s different in that it doesn’t access a database directly, but instead calls a method in
the business layer of the site. If you look at the definition for the ObjectDataSource control you can see
how this works:

<asp:ObjectDataSource ID=”ObjectDataSource1” runat=”server”
SelectMethod=”GetCategories” TypeName=”BlogManager”>

</asp:ObjectDataSource>

The TypeName in the tag points to the BlogManager class defined in the business layer of the Wrox Blog.
The SelectMethod then points to the method in that class that must be invoked to get the requested data.
Because the GetCategories is defined as Shared in the code, the ObjectDataSource doesn’t require an
instance of the BlogManager. However, if the method hadn’t been marked Shared, the .NET 2.0
Framework would automatically try to instantiate an instance of the BlogManager before it calls the
GetCategories method. ObjectDataSource controls are a great way to enforce a three-tier architecture
for your application, because they remove the need for the SqlDataSource controls that clutter up your
pages with SQL statements. You can read more about the ObjectDataSource controls in Chapter 12.

When editing a blog entry, the Visibility property of the two panels is changed as well. However,
when the Edit button is clicked, the form’s controls should be prepopulated with information from the
BlogEntry. Because the Edit link is contained in the DataList control, you can’t directly write an event
handler for it like you did with the btnCreateNewBlogEntry button. You saw earlier that the Edit link
had a CommandName and a CommandArgument set up inside the ItemTemplate for the DataList. These
properties are used in the EditCommand event for the DataList that fires when the Edit button is
clicked:

Protected Sub dlBlogEntries_EditCommand(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataListCommandEventArgs) _
Handles dlBlogEntries.EditCommand

Dim id As Integer = Convert.ToInt32(e.CommandArgument)
Dim myBlogEntry As BlogEntry = BlogManager.GetBlogEntry(id)
If myBlogEntry IsNot Nothing Then

‘ Fill the form fields; this is shown later.

End If
End Sub

This code retrieves the ID of the selected blog entry from the CommandArgument of the Edit link. With
this ID the proper BlogEntry record is retrieved from the database by calling GetBlogEntry. Because
the GetBlogEntry method can be used only by an administrator, the code in the business layer checks
role membership:

194

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 194

Public Shared Function GetBlogEntry(ByVal blogEntryId As Integer) As BlogEntry
If HttpContext.Current.User.IsInRole(“Administrator”) Then
Return BlogManagerDB.GetBlogEntry(blogEntryId)

Else
Throw New NotSupportedException(“Calling GetBlogEntry is not allowed when “ & _

“you’re not a member of the Administrator group.”)
End If

End Function

When the user is not an administrator, an error is thrown. Otherwise, GetBlogEntry in the Blog
ManagerDB class is called. By now, the code in this method should look familiar. Connection and command
objects are created by calling the appropriate factory methods. Then the name of the stored procedure
or query is set and a parameter for the ID of the blog entry is created, again using ReturnCommand
ParamName to get the right name, depending on the current connection type.

Finally, a DataReader is opened and a new blog item is created and filled when the item was found in
the database:

Using myReader As DbDataReader = _
myCommand.ExecuteReader(CommandBehavior.CloseConnection)

If myReader.Read() Then
myBlogEntry = New BlogEntry(myReader.GetInt32(myReader.GetOrdinal(“Id”)))
myBlogEntry.Title = myReader.GetString(myReader.GetOrdinal(“Title”))
myBlogEntry.Body = myReader.GetString(myReader.GetOrdinal(“Body”))
myBlogEntry.CategoryId = myReader.GetInt32(myReader.GetOrdinal(“CategoryId”))
myBlogEntry.DatePublished = _

myReader.GetDateTime(myReader.GetOrdinal(“DatePublished”))
End If
myReader.Close()

End Using
End Using
Return myBlogEntry

The code in the EditCommand handler checks if the BlogEntry instance returned from GetBlogEntry
is not Nothing. If it isn’t, the blog entry’s ID is stored in ViewState so it’s available later when the item
is saved. Then the controls on the form are filled with the public properties from the blog entry:

ViewState(“EditingId”) = id
pnlAddEditBlogEntry.Visible = True
pnlBlogEntries.Visible = False
txtTitle.Text = myBlogEntry.Title
txtBody.Value = myBlogEntry.Body
If lstCategory.Items.FindByValue(myBlogEntry.CategoryId.ToString()) _

IsNot Nothing Then
lstCategory.Items.FindByValue(_

myBlogEntry.CategoryId.ToString()).Selected = True
End If
calDatePublished.SelectedDate = myBlogEntry.DatePublished.Date

Because it is possible that a category has been removed from the database, and is no longer present in
the drop-down list, FindByValue is used to find out if it is possible to preselect the right category. When
the item is not found, the drop-down simply preselects the first item in the list.

195

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 195

Whether you are creating a new or updating an existing BlogEntry object, the final step in the process
is saving it. This is done with the Save button at the end of the form that triggers the following code:

Protected Sub btnSave_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnSave.Click

Page.Validate()

If calDatePublished.SelectedDate <> DateTime.MinValue Then
If Page.IsValid Then
Dim myBlogEntry As BlogEntry
If ViewState(“EditingId”) IsNot Nothing Then
myBlogEntry = New BlogEntry(Convert.ToInt32(ViewState(“EditingId”)))

Else
myBlogEntry = New BlogEntry

End If
myBlogEntry.Title = txtTitle.Text
myBlogEntry.Body = txtBody.Value
myBlogEntry.CategoryId = Convert.ToInt32(lstCategory.SelectedValue)
myBlogEntry.DatePublished = calDatePublished.SelectedDate

BlogManager.SaveBlogEntry(myBlogEntry)

The ID of the BlogEntry class has been made read-only to avoid calling code from changing it during
the object’s lifetime. However, when an item is being edited, the ID must be made available in the
BlogEntry object somehow, so SaveBlogEntry knows which item to update in the database. This is
why the BlogEntry class has two constructors. The parameterless version is used to create a new object
without its ID set. The second, overloaded constructor accepts the ID of the blog entry in the database,
which is then stored in the private_Id field. The value of this field can later be retrieved through the
public (and read-only) Id property, as you see in the code for the SaveBlogEntry method.

The SaveBlogEntry method in the BlogManager class performs the same security check as the GetBlog
Entry method you saw earlier. If the user is an administrator, the BlogEntry instance is forwarded to
SaveBlogEntry in the BlogManagerDB class that saves the entry in the database. Once again, this data
access method sets up a connection object by calling the appropriate method on the DbProviderFactory
class. Then a command object is created and its CommandText is set:

If myBlogEntry.Id = -1 Then ‘ Insert a new item
myCommand.CommandText = “sprocBlogEntryInsertSingleItem”

Else
myCommand.CommandText = “sprocBlogEntryUpdateSingleItem”

End If

Earlier you saw that when you’re editing a blog entry, its ID is retrieved from ViewState and passed to the
overloaded constructor of the BlogEntry class. In the SaveBlogEntry this ID is used to determine which
stored procedure or query to call. If the ID is still -1, a new blog entry is created, so the CommandText is set
to sprocBlogEntryInsertSingleItem. If there is an existing ID, sprocBlogEntryUpdateSingleItem
is used instead.

The SQL Server stored procedures and Microsoft Access queries look pretty similar. The following snip-
pet shows the Access query to update an existing blog item:

196

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 196

UPDATE
BlogEntry

SET
Title = ?, Body = ?, CategoryId = ?, DatePublished = ?

WHERE
Id = ?;

The stored procedure for SQL Server contains the following code:

@id int,
@title nvarchar(200),
@body nvarchar(MAX),
@categoryId int,
@datePublished datetime

AS

UPDATE
BlogEntry

SET
Title = @title,
Body = @body,
CategoryId = @categoryId,
DatePublished = @datePublished

WHERE
Id = @id

Except for the way the parameters are named, these procedures are identical. These different parameter
names are once again taken care of by the ReturnCommandParamName.

Because the parameters have no name in an Access database, it’s important they are added in the right
order. The Id parameter is used in the WHERE clause at the end of the UPDATE statement, so its parameter
must be added last as well.

Once all the parameters have been set up correctly, the database is updated by calling ExecuteNonQuery()
on the Command object.

When the code in the SaveBlogEntry methods has finished, control is returned to the BlogEntries
control that then executes EndEditing() so the list with blog entries is refreshed:

myBlogEntry.DatePublished = calDatePublished.SelectedDate

BlogManager.SaveBlogEntry(myBlogEntry)
EndEditing()

End If

EndEditing() hides the Edit panel and shows the List panel again. It then calls LoadData() to ensure
the blog list displays up-to-date information.

With the SaveBlogEntry method you have come to the end of the BlogEntries control. With the code
you have seen you can now create new blog items and manage existing ones. You can also list the blog
items in the BlogEntries control using the filters from the BlogEntriesFilter control.

197

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 197

Structured Error Handling and Logging
Chapter 5 told you that this chapter would cover a way to handle errors in ASP.NET applications.
However, so far you haven’t seen any code that puts that into practice. Yet the Wrox Blog does deploy a
nice way of catching and logging errors. At the same time, end-users are shielded from nasty error
messages and instead get a friendly page stating that somehow an error occurred. “How does this
work?” you may ask. To understand how this error-handling mechanism works, you need to look at two
important areas: configuration and handling and logging errors.

Configuration
First, there is an important setting in the Web.config file called <customErrors>. When you add a new
Web.config file to your application, this element is commented out so it doesn’t do anything. However,
in the Wrox Blog, the comment tags are removed and the element is changed so it now looks like this:

<customErrors mode=”On” defaultRedirect=”Error.aspx”>
<error statusCode=”404” redirect=”Error.aspx”/>
<error statusCode=”500” redirect=”Error.aspx”/>

</customErrors>

Now whenever an error occurs, ASP.NET looks at this element to see how to handle it. The
defaultRedirect is the page in your site you want to redirect the user to whenever an error occurs
that isn’t handled. On this page, you can display a message telling users that the server encountered an
error, that you are aware of it, and you are busy fixing it while they are reading that message.

You also see different <error> nodes for each type of error. You can use these settings to redirect to
different pages for different errors. For example, when a page cannot be found, the web server throws a
404 error. You can then set up an <error> node with a statusCode of 404 that redirects to PageNot
Found.aspx where you can tell the users the page could not be found and offer them a way to search the
site, for example. You could do the same with 500 errors (server errors) and redirect to another page
instead. Any error code not specifically set by an <error> element is sent to the page specified in
defaultRedirect. In the case Wrox Blog application, the different error codes all point to the same file.

Sending your users to a friendly error page is only one piece of the puzzle. All it does is shield the user
from ugly-looking error messages. However, with only these settings, you’ll never be aware the errors
occurred in the first place, so you can’t fix them. This is where the Global.asax file comes into play again.

Handling and Logging Errors
Whenever an unhandled exception in your site occurs — for instance, because the database is down, a
user entered bad data in the system, or because a requested page could not be found or processed — two
things happen. One of the things the ASP.NET run time does is redirect the user to the specified error
page as you saw in the previous section. However, before it does that, it fires the Application_Error
event that you can handle in the Global.asax file. Inside that event you can get access to the error that
occurred with Server.GetLastError(). Once you have a reference to that error, you can build up a
message with the error details and send it to yourself by e-mail. This is exactly what is being done in the
Global.asax for the Wrox Blog:

Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
Dim sendMailOnErrors As Boolean = True
If sendMailOnErrors Then

198

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 198

Dim subject As String = “Error in page “ & Request.Url.ToString()
Dim errorMessage As StringBuilder = New StringBuilder
Dim myException As Exception = HttpContext.Current.Server.GetLastError()

If myException IsNot Nothing Then
Do While myException IsNot Nothing
errorMessage.Append(“Message
” & _

myException.Message & “

”)
errorMessage.Append(“Source
” & _

myException.Source & “

”)
errorMessage.Append(“Target site
” & _

myException.TargetSite.ToString() & “

”)
errorMessage.Append(“Stack trace
” & _

myException.StackTrace & “

”)
errorMessage.Append(“ToString()
” & _

myException.ToString() & “

”)
myException = myException.InnerException

Loop
Else
errorMessage.Append(“No exception information available.”)

End If

Dim mySmtpClient As SmtpClient = New SmtpClient()
Dim myMessage As MailMessage = New MailMessage(_

AppConfiguration.EmailFrom, AppConfiguration.EmailTo, subject, _
errorMessage.ToString().Replace(ControlChars.CrLf, “
”))

myMessage.IsBodyHtml = True

mySmtpClient.Send(myMessage)
End If

End Sub

This code starts off by declaring a variable that determines whether or not error messages should be sent by
e-mail. You can use this variable to quickly turn off error handling when you’re developing new things. You
could also move it to a key in the Web.config file and create an entry in the AppConfiguration class for it.

The error (the exception in .NET terminology) is retrieved with HttpContext.Current.Server
.GetLastError(). There is one thing you should be aware of when you call this method. Whenever an
exception occurs in your site somewhere, ASP.NET wraps that exception inside a general Http
UnhandledException. By default, this exception doesn’t provide you with much detail. However, the
original exception (such as a NullReferenceException, an ArgumentException, or any of the other
exception types) is available in the InnerException of the error returned from GetLastError(). The
loop in the code gets the exception’s InnerException as long as there is one; this way, you can get
detailed information not only about the generic outer exception, but also about each inner exception it
contains.

If you’re not interested in the hierarchy that leads to the innermost exception, you can use GetBase
Exception() to get the exception that is the root cause of the problem, like this:

Dim myException As Exception = _
HttpContext.Current.Server.GetLastError().GetBaseException()

All the error information from the exceptions is appended to a StringBuilder using the .Append()
method. At the end, that error message is added as the body of the e-mail message using its ToString()

199

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 199

method. Notice the use of AppConfiguration.EmailFrom and AppConfiguration.EmailTo to get
the e-mail address from the Web.config file through the AppConfiguration class.

Finally, the mail message is sent using mySmtpClient.Send(myMessage). This method uses the SMTP
server defined in the <mailSettings> element in the Web.config file:

<system.net>
<mailSettings>
<smtp deliveryMethod=”Network”>
<network host=”smtp.YourProvider.Com” port=”25” />

</smtp>
</mailSettings>

</system.net>

If you can’t get the error handling to work, check that you defined a valid SMTP server in the configuration
file. Also, make sure that EmailFrom and EmailTo defined in the same file contain valid e-mail addresses.

You can expand the code in Application_Error so it sends you even more useful information. To diag-
nose complicated errors it can be useful to have an overview of information like the user’s cookies, session
variables, and various server settings found in Request.ServerVariables. With these additions, you can
make the error message even more usable.

With this code setup, you get an e-mail with detailed error information whenever an error occurs on the
server. This should enable you react quickly and efficiently, fixing possible bugs before they get worse
and trouble many users.

This also concludes the detailed discussion of the Wrox Blog, its design, and its code. In the next section
you learn how to install the Wrox Blog and embed it in your own site.

Setting up the Wrox Blog
You can choose to install the Wrox Blog application manually or by using the installer application sup-
plied on this book’s CD-ROM. The installer not only installs the necessary files for the Wrox Blog, but
also creates a sample web site that uses the user controls of the Wrox Blog. Running the installer creates
a virtual directory under IIS called Blog. The folder that is created by the installer contains the full
source for the Wrox Blog.

Alternatively, you can choose to unpack the supplied zip file to a folder on your machine. This gives you
a bit more choice with regard to where the files are placed, but you’ll have to add the necessary files to
an existing or new web site manually.

For both installation methods it’s assumed that the .NET 2.0 Framework, which is an installation require-
ment for Visual Web Developer, has already been installed. It’s also assumed that you have installed SQL
Server 2005 Express Edition with an instance name of SqlExpress. If you chose a different instance
name, make sure you use that name in the connection string for the Wrox Blog in the Web.config file.

Using the Installer
To install the Wrox Blog follow these steps:

200

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 200

1. Open the folder Chapter 06 - Wrox Blog\Installer from the CD-ROM that came with this book
and double-click setup.exe to start up the installer.

2. In the Setup wizard, accept all the defaults by clicking Next until the application has been
installed completely. Click Close to close the installer.

3. Next, open up the Web.config file in the Blog’s folder (by default, located at C:\Inetpub\
wwwroot\Blog) and verify that the two connection strings for the Access database and SQL
Server are correct. For the Access database, verify that the path to the .MDB file is correct. For
SQL Server, ensure that the name of the SQL Server instance is correct.

4. Set the DefaultConnectionString key to the connection you want to use. When you set it to
AccessConnectionString, make sure you set the enabled attribute of the <roleManager>
element to False. When you use a SQL Server connection, set that same attribute to True.

5. Now browse to http://localhost/Blog. The Wrox Blog application should appear. Click the
Login link and log in with a username of Administrator and a password of Admin123#.

Manual Installation
If you want to add the Blog application to a new or an existing application, you shouldn’t use the supplied
installer; you’ll have to follow these steps instead:

1. Start by creating a brand new web site in Visual Web Developer.

2. Open the folder Chapter 06 - Wrox Blog\Source from the CD-ROM that comes with this book
and extract the contents of the file Chapter 06 - Wrox Blog.zip to a folder on your hard drive.

3. Open aWindows Explorer and browse to the folder that contains the unpacked files. Next, arrange
both Visual Web Developer and the Windows Explorer in such a way that both are visible at the
same time.

4. In the Windows Explorer, select the folders App_Code, App_Data, Bin, Controls, Css, and
FCKeditor, as well as the files ErrorPage.aspx, ErrorPage.aspx.vb, Web.config, and Global.asax.
Then drag the selected folders and files from the explorer window onto the project in the
Solution Explorer in Visual Web Developer. When prompted if you want to overwrite any of the
files, click Yes. You should end up with a Solution Explorer that looks like Figure 6-12.

Figure 6-12

201

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 201

5. Open the file Default.aspx and create a skeleton for your page that can hold the BlogEntries
Filter and BlogEntries controls. You can use tables or any other HTML tag to control the
page layout.

6. Next, switch to Design View for the page, and from the Controls folder on the Solution Explorer,
drag the BlogEntriesFilter.ascx on the design surface at the location where you want the control
to appear. Repeat this step for the BlogEntries.ascx control. You should end up with markup
similar to this:

<table>
<tr>
<td>
<Wrox:BlogEntriesFilter ID=”BlogEntriesFilter1” runat=”server” />

</td>
<td>
<Wrox:BlogEntries ID=”BlogEntries1” runat=”server” />

</td>
</tr>
</table>

7. Open the Web.config file and locate the <connectionStrings> element. Make sure that the
connections for SQL Server and the Access database are set up correctly. If necessary, change the path
to the Access database and the name of your SQL Server instance. Also check that the Default
ConnectionString setting points to the database you want to use. Finally, when you’re using SQL
Server, make sure you set the enabled attribute of the <roleManager> to True. When you use an
Access database, set the enabled attribute to False.

8. You can now open the page in the browser by pressing F5 in Visual Web Developer. If everything
went as planned, you should now see the BlogEntriesFilter control and the list with blog
entries appear.

Note that you cannot edit blog entries at this stage because you have no way of authenticating the user.
If you want to use the supplied Microsoft Access database, you can simply copy the page Login.aspx
(and its code-behind file) from the supplied code file into your new web project and request it in the
browser. You can then log in with the account Administrator with the password Admin123#.

If you’re using a SQL Server database, you can configure the application so it supports the Membership
and Role providers. To do that, choose Website➪ASP.NET Configuration from the main menu in Visual
Web Developer. Then click the Security tab in the browser window that opened and create a new secu-
rity role called Administrator. Next, create a new account and assign it to the role you just created.

If you need more information about how the Web Site Administration Tool works, click the “How do I
use this tool?” link in the upper-right corner of the screen.

Once the application is configured correctly, create a new file and call it Login.aspx. From the Toolbox,
drag a Login control on the page. Alternatively, you can use the Login.aspx file from the code that
comes with this book and modify it to suit your needs. If you’re using SQL Server and you get an error
stating that sprocUserGetRoles could not be found, make sure you have set the enabled attribute of
the <roleManager> to True in the Web.config file.

Now that you’ve set up the Wrox Blog successfully, browse to this book’s download page at
www.wrox.com and check out how you can modify your blog.

202

Chapter 6

09_749516 ch06.qxp 2/10/06 9:15 PM Page 202

Summary
In this chapter you saw how to create and use a blogging application that can easily be incorporated in
an existing web site. You saw how to use the blog application from an end-user’s point of view.

You learned how the Wrox Blog application is designed and what classes it contains. You also read about
the challenges developers face when writing database-independent code and the possible solutions to
overcome these problems.

In the code explanation section you learned how to write code that can work with a SQL Server and an
Access database at the same time. Using the new factories pattern of the .NET 2.0 Framework enables
you to greatly decrease the complexity of writing code that can be run against multiple databases. In this
section you also saw how the classes and pages that make up the Wrox Blog application work internally,
and how they communicate with each other.

203

Wrox Blog

09_749516 ch06.qxp 2/10/06 9:15 PM Page 203

09_749516 ch06.qxp 2/10/06 9:15 PM Page 204

7
Wrox Photo Album

In recent years, the phenomenon of photo album web sites has provided viewers access to digital
images that capture the essence of an amateur or professional photographer’s work. From personal
family pictures to highly specialized artistic imaging, the Web is a great way to share photography
from any source to the known digital world. A popular approach to sharing pictures over the
Internet is to use an online photo album or catalogue of sorts. In this way, pictures can be logically
grouped into collections and include contextual information for a viewer to properly observe the
photograph in all its glory.

Although they usually serve the same overall purpose, photo album web sites exist in all sorts of
styles and flavors. From thumbnail generators to photograph-editing batched systems, these image
manipulation applications provide a wide array of features. However different and extensive they
may be, they all usually provide a list of essential features, including the following:

❑ View thumbnails of digital photos in a grid-like fashion.

❑ Click a single photo to view a larger or full-size version.

❑ Upload a new digital picture file.

❑ Enter a name and/or description for the picture.

❑ Classify the picture as a specific category or type.

❑ Edit an existing picture’s contextual information.

❑ Delete an existing picture.

These features alone would substantiate a useful web site package that any reasonable web developer
would consider as a valid third-party software purchase. However, it is often difficult to modify such
software applications or tools, because they often lock the developer into the standardized views and
limit control over the display and position of the images on the web page. From the format of the font
to the size of the thumbnails, there are usually undesirable constraints to customizing the web site
design and implementation, unless the programmer has access to the source code files where the
changes can occur. These considerations would point to the selection of an open source codebase to
develop an online photo album, allowing for a maximum amount of customization with a nominal
amount of time and effort.

10_749516 ch07.qxp 2/10/06 9:16 PM Page 205

The Wrox Photo Album is a great sample project that allows for easy customizations to be made on the
display and functionality of a photo album web site. It implements not only the new development
approaches to security and data, but also the desirable features that the user would expect for a better-
than-average online photo album.

This chapter takes a practical approach to understanding some of the newer concepts now available in
ASP.NET 2.0 by analyzing the implemented features within the Wrox Photo Album. Some of the new
features you tackle include data binding, themes, security, page markup, and navigation.

In the section “Wrox Photo Album Design,” you explore the design of the application in great detail.
This includes the structure of the web site, the pages and user controls, the database and data model
used, file management, and image storage considerations.

The section titled “Code and Code Explanation” performs a thorough and complete examination of the
areas of development necessary for storing and displaying photo albums online in the most effective
fashion. It reviews the classes involved, as well as the specific areas of focus in which a developer could
modify the application to his or her specific needs.

The final section reviews how to extract and customize the photo album in a development environment,
and how to install it to production. First things first, though: You need to know how to use the photo
album before you can modify or enhance it.

Using the Wrox Photo Album
Using the Wrox Photo Album is actually quite simple. If you have ever used a photo album or similar
sort of digital image application in the past, you’d agree that the features and functionality of this photo
album exist in similar fashion. Many of the common features shared across different picture viewing
applications exist in the Wrox Photo Album as you would expect, in a predictable fashion.

If the Wrox Photo Album web site has been successfully installed (refer to the section “Setting up the Project”
later in this chapter), you can browse to view the site by going to http://localhost/photoalbum. The
screen displayed in Figure 7-1 appears.

At the top of the menu are several links to choose from:

❑ Photo Albums

❑ About Me

❑ Contact Me

❑ Site Map

❑ Admin

These are considered the main menu items of the web site and can be edited within the site’s XML site
map navigation file. The next section discusses the editing process in greater detail.

206

Chapter 7

10_749516 ch07.qxp 2/10/06 9:16 PM Page 206

Figure 7-1

Clicking one of the main collection images — the images directly beneath the main menu items — loads
up the collection contents page, which consists of a grid of images, displayed in Figure 7-2.

Further clicking on any of these images loads the photo detail page, as shown in Figure 7-3.

The look and feel of the web site is managed by the use of ASP.NET 2.0 feature themes. Themes are essen-
tially sets of user interface management files, which allow the entire application’s look and feel to be eas-
ily modified at the change of a single configuration entry. You learn more about themes and skins in the
design section to follow.

The homepage is basically a photo selection page (see Figure 7-2) where you will see a list of large
thumbnail images displayed for each collection. These images are simply the first photo from each of the
collections arbitrarily selected in order to graphically represent the collection. The page contains a user
control for the bulk of the image display screens of the application. The groups of digital images are
called collections, and the images are referred to as photos. Each collection can have any number of pho-
tos. Collections also have a name and a description. Each photo can have a name, description, and a col-
lection to which it belongs. You can click one of the collection thumbnails to display the contents of the
collection, which are the photos themselves. Once the actual photos of a collection are displayed, you
can click an individual photo in order to view its full and unaltered state.

By clicking the About Me link, you’ll see there is a placeholder for the artist or photographer to identify
themselves pictorially. In similar fashion, the Contact Me page has the same placeholder.

207

Wrox Photo Album

10_749516 ch07.qxp 2/10/06 9:16 PM Page 207

Figure 7-2

Figure 7-3

208

Chapter 7

10_749516 ch07.qxp 2/10/06 9:16 PM Page 208

Figure 7-4 depicts the simple Contact Me page, with a placeholder for the web site owner’s picture.

Figure 7-4

The site map page contains a data-bound TreeView control, which contains links to each page on the
web site, just like the main menu at the top of the screen.

When you click Admin from the main menu, you enter into the secure administrator section of the web
site. You’re greeted with a Login control to authenticate your user credentials in the system. If you’re
not sure what your password is you can click the Password Recovery hyperlink at the bottom of the
Login control. Once you’re logged into the system, you will see the main menu for the administrator
area, shown in Figure 7-5.

Figure 7-5 shows the main menu administration page, with a GridView control displaying all of the
collections in the system by default. From this page, you’re greeted with a list of the existing collections
the system contained in a GridView control. This grid contains collections of photos that you can add or
delete at will. On the right-hand side of the grid, you see clickable hyperlinks for editing or deleting a
collection. You also see a hyperlink for editing the photos contained within a collection.

Clicking the Edit Photos link loads the page displaying the photos within that collection in an editable
grid (see Figure 7-6). This grid has all you will need to manage the existing photos in the system.

209

Wrox Photo Album

10_749516 ch07.qxp 2/10/06 9:16 PM Page 209

Figure 7-5

Figure 7-6210

Chapter 7

10_749516 ch07.qxp 2/10/06 9:16 PM Page 210

From the main menu of the Admin section you can also click the Add Collection link. Clicking this link
loads the page displayed in Figure 7-7.

Figure 7-7

Figure 7-7 shows the simple add-collection interface, which allows you to add a new collection to the
database, stating its name and description. To add a photo to any collection in the system, click the Add
Photo link at the top of the administration area. From this page, you can select the photo on your local
machine, enter a name for the photo, select a collection from the drop-down, and enter any descriptive
information about the image in the description field. Clicking the Upload button saves the image and
textual fields to the server where it is catalogued and viewable immediately.

After walking through the useful features of the Wrox Photo Album, you will be pleased to know there
is an insightful design involved in the project. The next section describes the design in detail.

Wrox Photo Album Design
The design of the Wrox Photo Album includes considerations for how the various pieces fit together, and the
structure of the site in general. It also explains the way in which images are managed within the system, and
how the images are bound to controls on the WebForms.

How It All Fits Together
The design chosen for the Wrox Photo Album has several distinct characteristics and takes into consider-
ation some very specific complexities of displaying and managing images online. These include the
following:

211

Wrox Photo Album

10_749516 ch07.qxp 2/10/06 9:16 PM Page 211

❑ Storing images (database versus file system)

❑ Displaying images (data-bound controls versus custom queries)

❑ Structure of the site

❑ Themes and skins

❑ Design of the data model

❑ Security model

The design decisions implemented within the Wrox Photo Album are not by any means locked in place.
They can be changed in various capacities in the areas of the security model chosen, data tables used, file
structures, and data binding as a whole. In short, nearly all of the application can easily be restructured
to accommodate your unique design decisions.

Storing Images
Two popular methods of storing and rendering images for a web site exist: Either store the images as
binary data within a database, or store them within a file folder on the web server as an alternative.
Storing the image in the database as binary data is not necessarily the best way to manage images over
the Internet. Studies have been performed that measure the quality and resolution of a JPEG image that
is created from a database and converted from binary data to a streamed image and sent to a browser.
Results have shown in some cases that for some reason the images that stream to the browser are of the
lower quality in comparison with images that are stored in a file folder on the web server and sent over a
normal HTTP protocol response. In addition, storing images outside of the database can arguably pro-
vide a greater amount of flexibility in the movement and control over storage and volume issues. This is
especially true if your Wrox Photo Album becomes large and unmanageable. That is, if you will be storing
thousands of images in the SQL Server Express 2005 database, there may be a performance hit to text-based
SQL queries on the database. As more and more queries run against your application, and the size of the
data begins to increase due to image volume, you may experience some level of performance degradation.
As an alternative to storing images in the database, storing them in a traditional web-based file folder
will ensure maximum control over your image content, while maintaining near-zero latency in your
database queries.

Displaying Images
In the classic ASP (ASP 3.0) world, in order to display thumbnails of images any grid-like fashion, a devel-
oper would have to create some fairly intelligent dynamic execution logic. With the advent of ASP.NET
data-bound controls, however, images can be rendered in a grid within what is known as Repeater controls.
The DataList control, which is one of the many repeater-like controls available, allows developers to
create a set of HTML that can be easily repeated every time a new record is processed through the control.

Following is an excerpt of the DataList control HTML markup in the Wrox Photo Album photo display
grid:

<asp:DataList ID=”DataList1” runat=”Server” dataSourceID=”SqlDataSource1”
repeatColumns=”6” repeatdirection=”Horizontal” borderwidth=”0px”

cellpadding=”3”>
<ItemStyle cssClass=”item” />
<ItemTemplate>

212

Chapter 7

10_749516 ch07.qxp 2/10/06 9:16 PM Page 212

<table align=left border=”0” cellpadding=”0” cellspacing=”0”>
<tr>

<td></td>
<td nowrap width=”100” valign=”top”>
<a class=”photoname” href=”viewphoto.aspx?photoID=<%# Eval(“photoID”)

%>”>
<%#GetName(Server.HtmlEncode(Eval(“Name”).ToString()))%>

</td>

<td></td>
</tr>
<tr>

<td></td>
<td>

<a href=’viewphoto.aspx?photoID=<%# Eval(“photoID”) %>’ >
<img class=”viewphoto” src=”upload/<%# Eval(“filepath”) %>”
height=”95” width=”95” alt=’<%# Eval(“description”) %>’ />

</td>
<td></td>

</tr>
</table>
</ItemTemplate>

</asp:DataList>

As displayed in the preceding HTML tags, the DataList control allows for the HTML to be repeated
with the specific image filename replaced each time the HTML section is rendered. The <%#
Eval(“fieldname”) %> fields are where the data fields will be replaced with the data rows from the
database. The table structure within the DataList control provides a formatted display of information
for each photo record. The section titled “Code and Code Explanation” reviews this in detail.

Site Structure
The site is composed of numerous separate files being referenced in an intelligent and systematic way,
adhering to popular practices of using user controls, WebForms, class files, master pages, and code-
behind files. The user controls are the commonly used ASP.NET files that represent the actual code and
processing of the ASP.NET WebForms. Each ASP.NET WebForm contains a single user control to contain
the business logic of the page. The class files are used to represent the photo and collection objects as
they are passed into the system from other WebForm pages. The master pages are used to provide con-
sistent aesthetics and structure to each page, showing the menu and title area for the page.

The sections of the project are listed in the following table:

Section Description

App_Code The object classes and helper classes such as those used for data access calls.

App_Data The actual SQL Server Express .mdf data file.

App_Themes The location of the contents of two themes to use.

Images Any images not associated to a particular theme.

Table continued on following page

213

Wrox Photo Album

10_749516 ch07.qxp 2/10/06 9:16 PM Page 213

Section Description

Secure Administrator area, locked down with controlled access by the ASPNET
security database and ASP.NET built-in security protocol to the administrator
role and the super-administrator role.

Upload The folder where images are uploaded and stored.

Controls The location for all user controls, to which most WebForm pages point.

Webforms The .aspx files in the root of the web site folder structure.

Configuration Files The Map.sitemap and Web.config files used to store the navigation and
configuration settings for the web site.

Figure 7-8 shows a developer’s view of the project’s folders and files from within the Solution Explorer.

Figure 7-8

Themes and Skins
The Wrox Photo Album look and feel is managed by the use of themes and skins in the folder App_Themes
in the root of the application. A skin allows you to define the visual styles that can be applied to any
controls. A theme, however, is a collection or grouping of skins and applies to the ASP.NET page itself. By
using these two techniques in conjunction, the entire site’s look and feel can be configured and managed
from a configuration file or application setting. Specifically, the actual theme that the application is
currently using can be found in the appSettings section of the Web.config file, as displayed here:

214

Chapter 7

10_749516 ch07.qxp 2/10/06 9:16 PM Page 214

<appSettings>

<add key=”CurrentTheme” value=”openbook” />

<!-- Commented Lines Here...

<add key=”CurrentTheme” value=”ultraclean” />
-->

</appSettings>

The Wrox Photo Album is configured with two themes:

❑ The OpenBook theme

❑ The UltraClean theme

Each theme can be used by simply changing the entry within the Web.config file as documented in the
preceding code. The actual entries for each of these are displayed in the text that follows and are mutu-
ally exclusive in nature. That is, only one appSettings CurrentTheme entry is allowed to exist at a
time. The other setting must be commented out or deleted.

You could leave the OpenBook theme in place with the following entry in the Web.config file:

<appSettings>
<add key=”CurrentTheme” value=”openbook” />

</appSettings>

Or instead, you could use the following entry for the UltraClean theme:

<appSettings>
<add key=”CurrentTheme” value=”ultraclean” />

</appSettings>

The OpenBook theme uses a much more elegant font style, and a beautiful background image of an open
book. Figure 7-1 at the beginning of the chapter shows what the OpenBook theme looks like in your
browser.

The UltraClean theme (see Figure 7-9) uses a standard Arial font style, with hardly any other formatting
or background colors and images. This is provided purposefully, because many developers would natu-
rally like to make changes to an existing skin in order to customize it to their liking.

Thus, themes allow you to make changes to the visual elements of the site as a whole. But if you want to
make granular changes to individual controls, you would have to modify the skin files within the theme
folders, respectively. The skin files represent how the ASP.NET controls are to be formatted, including
the application of CSS style sheets and specific server-side HTML markup tags.

215

Wrox Photo Album

10_749516 ch07.qxp 2/10/06 9:16 PM Page 215

Figure 7-9

Data Model
The data model is simplistic by design and by purpose. Only two tables are used in the site: Photo and
Collection. The model is displayed in Figure 7-10.

Figure 7-10

216

Chapter 7

10_749516 ch07.qxp 2/10/06 9:16 PM Page 216

The following tables depict the specific fields of each of the database tables in use:

The Photo Table

Field Name Data Type Description

photoID Int The unique identifier for this record.

collectionID Int The foreign key collection ID within the system.

filepath Varchar The file path of the photo file in the web server’s folder path.

name Varchar The name of the photo.

description Varchar The detailed description of the photo.

The Collection Table

Field Name Data Type Description

collectionID Int The unique identifier for this record.

name Varchar The name of the collection.

description Varchar A description of the collection.

The next section walks you through the security model and its implied mechanisms within the application.

Security Model
You need some level of security to protect your precious photos from the untrusted user out in
cyberspace. The Wrox Photo Album provides a basic security model using Forms Authentication and a
SQL Server Express Data Provider. This SQL Server Express provider generates a new security database
when implemented, which is included in the project and used to house all of the user account informa-
tion and security settings. This security model implements Forms Authentication intrinsically within the
various security controls, such as those used to login, display login status, recover your password,
change your password, and create a new user.

Two accounts are created for use within the photo album, and two different roles that those accounts are
assigned to, respectively. These are outlined in the following table:

Username Password Account Description

Admin password# This user is assigned to the Administrator role.

SuperAdmin password# This user is assigned to the Super Administrator role.

In successive fashion, the following table details the list of roles created in the system, and what permis-
sions those roles have:

217

Wrox Photo Album

10_749516 ch07.qxp 2/10/06 9:16 PM Page 217

Role Role Description

Administrator This role has the ability to add photos and photo collections to the
system, but does not have any edit or delete permissions.

Super Administrator This role has the ability to add, edit, and delete both photos and
collections.

Aside from these design considerations, the Wrox Photo Album has been designed in accordance with the
ASP.NET 2.0 features that you’d expect. Nothing is earth-shattering or groundbreaking in nature, just
typical, and the new .NET 2.0 tools, including the navigation controls, master pages, GridView control,
file upload control, and others.

Classes Involved
The following sections outline the classes involved in the system from a design perspective.

The Photo Class
The Photo class is used to represent an instance of the photo in the application logic. Figure 7-11 is a graphi-
cal representation of the Photo class in the system, showing its fields, properties, and methods separately.

Figure 7-11

The Photo class is used to represent a Photo object as it is passed into the business object layer for entry
into the system. The following table lists the properties of the Photo class:

Property Return Type Description

CollectionID Integer The specific parent collection to which the photo belongs.

Description String The description entered for the photo.

FilePath String The image’s filename as it exists in the filesystem of the server
for storage.

Name String The name of the photo.

218

Chapter 7

10_749516 ch07.qxp 2/10/06 9:16 PM Page 218

The next class is where the photo items are managed and contained within.

The PhotoCollection Class
The PhotoCollection class, shown in Figure 7-12, outlines the basic composition of the class, with its
fields, properties, and events.

Figure 7-12

The PhotoCollection class is used to represent a PhotoCollection object as it is passed into the business
object layer for entry into the system. The following table lists the properties of the PhotoCollection class:

Property Return Type Description

Description String The text description provided for the collection.

Name String The name entered for the collection.

The next class ties in how the business classes you have already studied will interact with the database.

The PhotoDB Class
The data access layer is managed and provided via this PhotoDB class (see Figure 7-13), because it provides
a window to the data and data objects.

Figure 7-13

The data access strategy is to maintain a lightweight set of database command logic that provides data
management capabilities to the presentation layer. The DataAccessLayer class is primarily used to
insert new photos and collections into the database. The basis of this class is essentially to separate the
implementation of the data access activities from the presentation layer of the application as much as

219

Wrox Photo Album

10_749516 ch07.qxp 2/10/06 9:16 PM Page 219

possible. By using class object references as parameters to method calls within this business layer, you
can potentially save time in customizations, because you need only to manage the class definition and
class references in a few places to provide additional fields or functionality.

The data access layer contains the following properties and methods:

Property or Method Return Type Description

ConnectionString String This property is the textual connection string from
the Web.config file’s connection string entry.

GetFirstImage String This function accepts a collectionID as a
parameter, and returns a string image path for the
single photo that was selected from the database to
represent that collection.

InsertCollection Boolean This function accepts a photocollection object
as its only parameter, and adds it as a collection
into the database.

InsertPhoto Boolean This function accepts a photo object as its only
parameter, and adds the photo to the database.

The InsertPhoto function is possibly the most important area of the class, and is listed here:

Public Shared Function InsertPhoto(ByVal p As Photo) As Boolean
Try

‘Declare the objects for data access
Dim conn As New SqlConnection()
Dim cmd As New SqlCommand()
‘set the connection string
conn.ConnectionString = DataAccessLayer.ConnectionString
cmd.Connection = conn
conn.Open()
cmd.CommandType = CommandType.StoredProcedure
cmd.CommandText = “add_photo”
‘ Create a SqlParameter for each parameter in the stored proc.
Dim idParam As New SqlParameter(“@path”, p.Filepath)
Dim cParam As New SqlParameter(“@collectionID”, p.CollectionID)
Dim nameParam As New SqlParameter(“@name”, p.Name)
Dim descParam As New SqlParameter(“@desc”, p.Description)
‘add each parameter to the command object
cmd.Parameters.Add(cParam)
cmd.Parameters.Add(idParam)
cmd.Parameters.Add(nameParam)
cmd.Parameters.Add(descParam)
cmd.ExecuteNonQuery()

Return True

Catch ex As Exception
Throw (ex)

End Try
End Function

220

Chapter 7

10_749516 ch07.qxp 2/10/06 9:16 PM Page 220

This excerpt provides insight to the basic data insertion operation that the DataAccessLayer class
provides. Dim conn As New SqlConnection() provides a reference to a new connection. This
connection will be set to be the SQL Server Express 2005 PhotoDB.mdf database as per the Web.config
setting, with the following line of code:

conn.ConnectionString = DataAccessLayer.ConnectionString

Next, the function opens the connection and begins to set the properties of the SqlCommand object. The
command is stated to be a stored procedure with the name of add_photo. This stored procedure accepts
four parameters, and is shown here:

ALTER PROCEDURE dbo.add_photo
(
@collectionID int,
@path varchar(300),
@name varchar(300),
@desc varchar(300)
)
AS

insert into photo (collectionID, filepath, [name], description) values
(@collectionID, @path, @name, @desc)

RETURN

In order to call the stored procedure from the ADO.NET SqlCommand object, you need to add SqlParameter
objects to it. The following code creates the four parameter object variables, assigns values to them, and adds
them into the command parameters collection:

‘ Create a SqlParameter for each parameter in the stored proc.
Dim idParam As New SqlParameter(“@path”, p.Filepath)
Dim cParam As New SqlParameter(“@collectionID”, p.CollectionID)
Dim nameParam As New SqlParameter(“@name”, p.Name)
Dim descParam As New SqlParameter(“@desc”, p.Description)
‘add each parameter to the command object
cmd.Parameters.Add(cParam)
cmd.Parameters.Add(idParam)
cmd.Parameters.Add(nameParam)
cmd.Parameters.Add(descParam)

Now you just need to execute the stored procedure, which inserts a record into the photo database table.
The cmd.ExecuteNonQuery() statement provides just that.

The next section walks you through each code file with a detailed explanation on the background
and/or purpose of the modules.

Code and Code Explanation
This section explains each of the essential code files in the Wrox Photo Album project. You look in detail
at the files in each of the different folders and learn how they interact and are used across the project.

221

Wrox Photo Album

10_749516 ch07.qxp 2/10/06 9:16 PM Page 221

Root Files
The root of the Wrox Photo Album contains several important files, including the main ASPX shell-
pages, and the configuration and formatting pages. Most of the business logic is hidden from these
pages and contained in the reusable web user controls held in the Usercontrols folder.

Web.config
The Web.config stores vital configuration entries used within the application. One entry, named the
SqlServerConnectionString, controls the connection to the database, as shown here:

<connectionStrings>
<add name=”SqlServerConnectionString”

connectionString=”server=(local)\SqlExpress;AttachDbFileName=|DataDirectory|PhotoDB
.mdf;Integrated Security=true;User Instance=true”
providerName=”System.Data.SqlClient” />
</connectionStrings>

It also contains information managing the SMTP e-mail settings for sending out e-mails:

<appSettings>
<add key=”EmailFrom” value=”admin@myphotoalbum.com” />
<add key=”EmailTo” value=”admin@myphotoalbum.Com” />

</appSettings>

In order to access these entries, such as in the DataAccessLayer class, use the following code:

Public Class DataAccessLayer
Public Shared ReadOnly Property ConnectionString() As String

Get
Return

ConfigurationManager.ConnectionStrings(“SqlServerConnectionString”).ConnectionString
End Get

End Property

This is simply referencing the Web.config file to extract the values from the textual data and place them
into the class variable references.

In the next section you get a look at the use of the various master pages in use.

Masterpage.master and Admin.master
The master pages are used to maintain a consistent view of the pages with different formats for each.
The Masterpage.master is the master page for the public pages on the site, which all users see when
viewing the web site. The master page contains several important controls that are used across the public
pages of the site. These include a SiteMapDataSource, Menu, SiteMapPath, and a
ContentPlaceHolder control.

The Admin.master is a different master page that is used only for the pages contained within the Secure
folder. These are considered to be the administrative pages, and are accessible only once the user logs in
to the system.

222

Chapter 7

10_749516 ch07.qxp 2/10/06 9:16 PM Page 222

Web.sitemap
This XML file is simply a hierarchical list of siteMapNode elements that allow a web site to abstract its
links of pages into a separate area for shared consumption. The contents of the file are as follows:

<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >
<siteMapNode url=”#” title=”” description=”Welcome to PhotoShare!”>
<siteMapNode url=”default.aspx” title=”Photo Albums” />
<siteMapNode url=”about.aspx” title=”About Me” />
<siteMapNode url=”contact.aspx” title=”Contact Me” />
<siteMapNode url=”sitemap.aspx” title=”Site Map” />
<siteMapNode url=”secure/admin.aspx” title=”Admin” />

</siteMapNode>
</siteMap>

The Web.sitemap file is used as a data source for the menu of the web site, which is contained within the
master page. It’s also used to feed the TreeView control in the sitemap.aspx page. In this way, if you
need to add a page to the web site, it can be instantly positioned within all of the navigation controls by
simply adding the entry to this file.

WebForms
The root of the Wrox Photo Album contains several important files, including the main ASPX pages, and
the configuration and formatting pages. The following pages comprise the pages used when a general
user visits the site.

Photos.aspx
This WebForm displays the photos from the web server in the form and appearance of a grid. This
implements an ASP.NET 2.0 DataList control that renders an HTML image control across the page
from left to right and from top to bottom. The DataList control has been called a big brother to the
Repeater control. They are both essentially the same, except that the DataList control has a bit more
value in having built-in templates and a more flexible layout.

The following code represents the data-bound DataList control:

<asp:DataList ID=”DataList1” runat=”Server” dataSourceID=”SqlDataSource1”
repeatColumns=”6” repeatdirection=”Horizontal” borderwidth=”0px”

cellpadding=”3”>
<ItemStyle cssClass=”item” />
<ItemTemplate>
<table align=left border=”0” cellpadding=”0” cellspacing=”0”

class=”collection”>
<tr>

<td></td>
<td nowrap width=”100” valign=”top”>
<a class=”photoname” href=”viewphoto.aspx?photoID=<%# Eval(“photoID”)

%>”>
<%#GetName(Server.HtmlEncode(Eval(“Name”).ToString()))%>

</td>

223

Wrox Photo Album

10_749516 ch07.qxp 2/10/06 9:16 PM Page 223

<td></td>
</tr>
<tr>

<td></td>
<td>

<a href=’viewphoto.aspx?photoID=<%# Eval(“photoID”) %>’ >
<img class=”viewphoto” src=”upload/<%# Eval(“filepath”) %>”
height=”100” width=”100” alt=’<%# Eval(“description”) %>’ />

</td>
<td></td>

</tr>
</table>
</ItemTemplate>

</asp:DataList>

The data-binding settings of the preceding HTML markup, dataSourceID=”SqlDataSource1”, point
to the SqlDataSource control also contained within the page, and are listed here:

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server” ConnectionString=”<%$
ConnectionStrings:SqlServerConnectionString %>”

SelectCommand=”SELECT [photoID], [collectionID], [filepath], [name],
[description] FROM [photo] WHERE ([collectionID] = @collectionID)”>

<SelectParameters>
<asp:QueryStringParameter Name=”collectionID”

QueryStringField=”collectionID” Type=”Int32” />
</SelectParameters>

</asp:SqlDataSource>

The SqlDataSource control accepts a querystring parameter, collectionID, which is passed in from
the clicking of a collection image on the default.aspx page. From Design View, you can click the smart
tag of a DataSource control and view the wizard for configuration and parameterization of the control
at run time. This wizard provides the capability to view and select querystrings, cookies, posted forms,
or session parameters to feed the dynamic SQL queries of the control.

Login.aspx
Figure 7-14 shows the Login control, new in ASP.NET 2.0.

The Login WebForm contains an ASP.NET Login control, which intrinsically accesses the SQL Server
Express ASPNET database for authentication calls. As shown in the following code, there is very little
HTML markup needed to implement this login functionality in the site:

<asp:Login ID=”Login1” runat=”server” PasswordRecoveryText=”forgot password?”
PasswordRecoveryUrl=”~/passwordrecovery.aspx”
DestinationPageUrl=”~/secure/admin.aspx”>
</asp:Login>

224

Chapter 7

10_749516 ch07.qxp 2/10/06 9:16 PM Page 224

Figure 7-14

As you can see within the HTML markup of the page, just a few properties are set for the Login control
that change the behavior of the control in the site. These are listed and explained in the following table:

Property Description

PasswordRecoveryText This is the text you see where the link exists for a user to
recover his or her password by a potential secret question
used when creating the account.

PasswordRecoveryUrl This is the URL used for the password recovery URL, which
points to a page with the password recovery control some-
where in it.

DestinationPageUrl This is the URL to send the user to when the user successfully
answers the secret question and is allowed to recover the
password via an e-mail sent to him or her by the system.

This is just one example of how ASP.NET 2.0 provides robust functionality built into the security controls
and usable right out of the box.

Admin.aspx
The Admin.aspx WebForm is essentially the landing page for the secure section of the site, seen immediately
after logging in. This Admin page contains a GridView control, which is data-bound to the site’s collection
data, as displayed in Figure 7-15.

225

Wrox Photo Album

10_749516 ch07.qxp 2/10/06 9:16 PM Page 225

Figure 7-15

The GridView of collections allows a Super Administrator to edit or delete a collection by clicking the
appropriate hyperlinks in the row of the collection grid view.

From the Page_Load event of this page, the user is authenticated to ensure he or she is a member of
either an Administrator or a Super Administrator role within the security configuration. Either of these
roles allows for access to the secure folder of the site. The Super Administrator role, however, is the only
role that provides edit and delete functionality to the images and collections of the site. Thus, the
GridView control is hidden for Administrator users, but visible for Super Administrator users.

This authentication logic is depicted in the following excerpt:

<%@ Control Language=”VB” ClassName=”admin” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

‘we check for a super admin or admin...
If Context.User.IsInRole(“Administrator”) Then

grdCollectionManagement.Visible = False
End If
If Context.User.IsInRole(“Super Administrator”) Then

grdCollectionManagement.Visible = True
End If

End Sub
</script>

The GridView is bound to the SqlDataSource control on the page, and the database actions that the
grid provides are configured within the HTML markup of the SqlDataSource. The following code
displays the SelectCommand, UpdateCommand, and DeleteCommand queries, as well as the parameters
for each database command:

226

Chapter 7

10_749516 ch07.qxp 2/10/06 9:16 PM Page 226

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server” ConnectionString=”<%$
ConnectionStrings:SqlServerConnectionString %>”

SelectCommand=”SELECT [collectionID] AS collectionID, [collection name] AS
collection_name, [description] AS description, [number of photos] AS
number_of_photos FROM [collection_count]” UpdateCommand=”UPDATE Collection SET
description =@description, name =@collection_name where collectionID =
@collectionID” DeleteCommand=”DELETE from Collection where collectionID =
@collectionID”>

<DeleteParameters>
<asp:Parameter Name=”CollectionID” />

</DeleteParameters>
<UpdateParameters>

<asp:Parameter Name=”description” />
<asp:Parameter Name=”collection_name” />

</UpdateParameters>
</asp:SqlDataSource>

This SqlDataSource control acts as a responsive party for all data interactions for the GridView. Any
edits, deletes, selects, and so on, must pass through this control before they can make their way to the
database. Although this approach may not be suitable for large-scale enterprise application development,
it suffices for the nature of this photo album application.

Editphotos.aspx
The Editphotos.aspx WebForm displays the photos from the web server in a GridView for the purpose
of editing or deleting the photos. As with the collection GridView on the Admin page, the GridView
control is bound to the SqlDataSource control on the page. The database actions that the grid provides
are configured within the HTML markup of the SqlDataSource. The following code displays the
SelectCommand, UpdateCommand, and DeleteCommand queries, as well as the parameters for each
database command:

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server” ConnectionString=”<%$
ConnectionStrings:SqlServerConnectionString %>”

SelectCommand=”SELECT [photoID], [collectionID], [filepath], [name],
[description] FROM [photo] WHERE ([collectionID] = @collectionID)”

UpdateCommand=”UPDATE photo SET description = @description, name = @name,
filepath = @filepath, collectionID = @collectionID where photoID = @photoID”
DeleteCommand=”DELETE From photo where photoID = @photoID”>

<SelectParameters>
<asp:QueryStringParameter Name=”collectionID”

QueryStringField=”collectionID” Type=”Int32” />
</SelectParameters>
<UpdateParameters>

<asp:Parameter Name=”collectionID” />
<asp:Parameter Name=”name” />
<asp:Parameter Name=”filepath” />
<asp:Parameter Name=”photoID” />
<asp:Parameter Name=”description” />

</UpdateParameters>
<DeleteParameters>

<asp:Parameter Name=”photoID” />
</DeleteParameters>

</asp:SqlDataSource>

227

Wrox Photo Album

10_749516 ch07.qxp 2/10/06 9:16 PM Page 227

The actual implementation of the grid is shown in the following code, displaying bound field entries for
the textual data, and an ImageField bound field for a thumbnail of the image:

<asp:GridView ID=”GridView1” runat=”server” AllowPaging=”True” AllowSorting=”True”
AutoGenerateColumns=”False” DataKeyNames=”photoID”

DataSourceID=”SqlDataSource1” CellPadding=”2” CellSpacing=”1” GridLines=”None”
PageSize=”4” ShowFooter=”True”>

<PagerSettings Position=”TopAndBottom” />
<Columns >

<asp:BoundField DataField=”photoID” HeaderText=”photoID”
InsertVisible=”False” ReadOnly=”True”

SortExpression=”photoID” />
<asp:BoundField DataField=”collectionID” HeaderText=”collectionID”

SortExpression=”collectionID” />
<asp:BoundField DataField=”filepath” HeaderText=”filepath” ReadOnly=”True”

SortExpression=”filepath” />
<asp:BoundField DataField=”name” HeaderText=”name” SortExpression=”name” >

<ItemStyle Width=”100px” />
</asp:BoundField>
<asp:BoundField DataField=”description” HeaderText=”description”

SortExpression=”description” >
<ItemStyle Width=”300px” />

</asp:BoundField>
<asp:ImageField DataImageUrlField=”filepath”

DataImageUrlFormatString=”~/upload/{0}” NullImageUrl=”~/upload/{0}.jpg” >
<ControlStyle Height=”50px” Width=”50px” />

</asp:ImageField>
<asp:CommandField ShowDeleteButton=”True” ShowEditButton=”True” />

</Columns>
</asp:GridView>

The GridView allows for inline editing of data by clicking the Edit link within a row on the GridView.
This automatically provisioned inline row editing is a new ASP.NET 2.0 feature, and saves the developer
from creating complex and difficult routines for text boxes and editable areas within a grid.

Secure Area Files
The Secure folder of the Wrox Photo Album contains the administrator area files, including the pages
that allow for adding, editing, and deleting photos and collections of photos. As with the public area of
the site, most of the business logic is hidden from these pages, and contained in the reusable web user
controls held in the Usercontrols folder. See the “User Controls” section for more detailed analysis of the
logic contained within the user controls for this section.

The Secure folder is set to deny anonymous access within the ASPNET security database and prevents
unauthorized access intrinsically. If a page is requested by the browser within this Secure folder, and
the current user has not been authenticated (not logged in), the browser is directed to a login page as a
preventative measure. If the user has logged into the application, the Secure folder’s permissions would
be satisfied, and the requested page would load normally.

228

Chapter 7

10_749516 ch07.qxp 2/10/06 9:16 PM Page 228

User Controls
Some specific user controls in the site provide all of the navigation and content display for multiple
pages. Because web user controls promote a practice of creating and using reusable code, they were
made to be applicable within multiple pages of the site, depending on the nature of the controls.

header.ascx
The header user control is used to provide the top area of each page with meaningful content. If anything
needs to reside at or near the top of a web page, you should add it to the header control so it is visible
through all of the pages.

The following code represents entire header.ascx source:

<%@ Control Language=”VB” AutoEventWireup=”false” CodeFile=”header.ascx.vb”
Inherits=”Controls_header” %>
<div style=”text-align: center”>

<table><tr>
<td></td>
<td><h1><% Response.Write(Page.Title) %></h1>
</td>

</tr></table>
</div>

Notice that the <%Response.Write(Page.Title)%> tags are used to write back to the response stream
a title of the web site on the top of each page, which originated from the Web.config file.

footer.ascx
The footer user control is used as the bottom section of the site, for each page that uses the master page.
That is, the footer control, among others, is a referenced control within the master page. In this way, it is
propagated to all pages in the same exact manner.

The content of the footer control is as follows:

<%@ Control Language=”VB” AutoEventWireup=”false” CodeFile=”footer.ascx.vb”
Inherits=”Controls_footer” %>
© 2005 Wrox Press
Login

This excerpt includes a few hyperlinks. One is for the Wrox Press web site, and the other is a link to the
Login page for the chat application.

navigation.ascx
The navigation user control is used to provide the reusable menu on each page in the site. The Menu
itself is a brand-new ASP.NET 2.0 control that binds to a SiteMapDataSource control, also new in version
2.0 of the .NET Framework. The SiteMapDataSource control is used to bind to an XML file, wherein
the site files are listed as entries in the XML file. This is where you can change the data that feeds the
menu of the site.

229

Wrox Photo Album

10_749516 ch07.qxp 2/10/06 9:16 PM Page 229

The following excerpt is the HTML markup of the navigation control:

<%@ Control Language=”VB” AutoEventWireup=”false” CodeFile=”navigation.ascx.vb”
Inherits=”Controls_navigation” %>
<asp:Menu ID=”Menu1” runat=”server” DataSourceID=”SiteMapDataSource1”
Orientation=”Horizontal”

StaticDisplayLevels=”2”></asp:Menu>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” runat=”server” />

The XML file of the SiteMapDataSource control is shown here:

<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >
<siteMapNode url=”#” title=”” description=”Welcome to PhotoShare!”>
<siteMapNode url=”default.aspx” title=”Photo Albums” />
<siteMapNode url=”about.aspx” title=”About Me” />
<siteMapNode url=”contact.aspx” title=”Contact Me” />
<siteMapNode url=”sitemap.aspx” title=”Site Map” />
<siteMapNode url=”secure/admin.aspx” title=”Admin” />

</siteMapNode>
</siteMap>

To add a page to the menu of the web site, you must simply copy and paste (with the necessary modifi-
cations) an entry of the preceding XML file. In this way, the master page (which contains the only reference
to the navigation control) provides visibility to the menu of the site on each page.

The next section explains in detail how to install and configure the source files of the Wrox Photo Album
and how to deploy the site to a server in a production environment.

Setting up the Project
You can set up the Wrox Photo Album in two ways: hosted web site installation or local developer
installation.

Hosted Web Site Installation
If you want to install the Wrox Photo Album as a hosted web site on a computer or server, without
customizations or enhancements at all, follow these steps (assuming that the .NET Framework 2.0 is
already installed):

1. Open the folder Chapter 06–Wrox Photo Album\Installation Files\ from the CD-ROM that
came with this book and double-click the file setup.exe.

2. This process installs the files properly for hosting the web site locally to C:\inetpub\wwwRoot\
PhotoGallery as a file-based web site application. Note, in the Setup wizard, one of the initial
screens will require you to confirm the name of the virtual directory where your application will
be installed to within IIS. This virtual directory name is important, because it will allow navigation
from localhost/your virtual directory name. Try a name like PhotoGallery, which would
then allow for browsing to http://localhost/photogallery/.

230

Chapter 7

10_749516 ch07.qxp 2/10/06 9:16 PM Page 230

3. Click Next to install the application, and close the installation program when it completes.

4. Finally, browse to your local web site (in step 2, for example, http://localhost/photo
gallery). The Wrox Photo Album application should appear. To test the administration section,
click the Admin link and log in with a username of SuperAdmin and a password of password#.

Local Developer Installation
If you would like to open the project in Visual Studio 2005 or Visual Web Developer, perform the follow-
ing steps (assuming that the .NET Framework 2.0 is already installed, along with either Visual Studio
2005 or VWD):

1. Start by creating a brand-new web site in Visual Web Developer using Visual Basic .NET.

2. Open the folder Chapter 06–Wrox Photo Album Installer\ from the CD-ROM that came with
this book and extract the contents of the file PhotoAlbumSource.zip to a folder on your hard
drive.

3. Open a Windows Explorer and browse to the folder that contains the unpacked files.

4. Next, arrange both Visual Web Developer (VWD) and the Windows Explorer in such a way that
both are visible at the same time.

5. In the Windows Explorer, select all of the folders and files within the codebase and drag the
selected folders and files from the explorer window into the Solution Explorer in VWD. If
you’re prompted to overwrite files, select Yes. You should end up with a Solution Explorer that
contains all of the necessary files for the project to run properly.

6. In the Web.config file, modify the EmailTo and EmailFrom values in the appSettings section to
reflect the administration e-mail accounts to be used for sending and receiving e-mail, should you
decide to use this feature (see the following code). Also, uncomment the entry you would like to
use for the theme of the web site: either OpenBook or UltraClean. This can be changed back at any
time, should you change your mind. These settings will require changing to your needed e-mail
settings even if you performed the installation of the application via the install files.

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<appSettings>
<add key=”EmailFrom” value=”admin@myphotoalbum.com” />
<add key=”EmailTo” value=”admin@myphotoalbum.Com” />
<!--
<add key=”CurrentTheme” value=”openbook” />
-->
<add key=”CurrentTheme” value=”ultraclean” />

</appSettings>

7. In the Web.config file, modify the smtp value in the mailSettings section (as shown in the fol-
lowing code) to reflect the e-mail SMTP outbound mail server name to be used for sending and
receiving e-mail, should you decide to use this feature:

</connectionStrings>
<system.net>
<mailSettings>
<smtp deliveryMethod=”Network”>

231

Wrox Photo Album

10_749516 ch07.qxp 2/10/06 9:16 PM Page 231

<network host=”smtp.YourMailServerName.com” port=”25” />
</smtp>

</mailSettings>
</system.net>
<system.web>

8. Press F5 to run the application in the development environment.

If you want to see an example of how to extend the functionality of the Wrox Photo Album, head to
www.wrox.com and find this book’s download page.

Summary
In this chapter you learned about some of the more useful controls and tools in the ASP.NET 2.0 environ-
ment, such as themes, navigation controls, security controls, the SQL Server Express database tools, and
the use of master pages in authoring a consistent web site look and feel. The reading was gauged to lead
you to an understanding of how each of these new and exciting features provides the rapid development
everyone’s been waiting for in Visual Studio 2005.

In the code explanation section you studied the different techniques in handling images on a web server,
in regards to storing and delivering images to a user. You also saw how the classes and pages that comprise
the Wrox Photo Album work, and how they communicate with each other.

232

Chapter 7

10_749516 ch07.qxp 2/10/06 9:16 PM Page 232

8
Customer Support Site

No matter how well your products might work, how stable the hardware you sell is, or how happy
your customers are about your company and your products, your users are likely to have a need for
more information about your products and services sooner or later. They may want to look up the
specifications of a product, find the latest drivers to make the product work with a more recent version
of their operation system, or find out handy tips about cleaning and maintaining it.

The Customer Support Site presented in this chapter is a web site that allows users to quickly find
information about the products or services that your company might be selling. Although this
chapter is based on a fictitious hardware-selling company called Wrox Hardware, the principles
you learn in this chapter can be applied to many other sites that use a hierarchical content model.

Because this is a book about ASP.NET, this chapter focuses on a lot of the new features of ASP.NET
2.0. However, when Microsoft released the .NET Framework version 2.0 with ASP.NET 2.0, it not
only released developer’s tools like Visual Studio and Visual Web Developer Express Edition, it
also released a new version of its relational database management system called SQL Server 2005.
This new version of SQL Server tightly integrates with the .NET 2.0 Framework and Visual Web
Developer and has a long list of new features and improvements. Because many web applications
make use of a database, it’s important to understand the capabilities of the database engine in use.
Therefore, in this chapter you get a good look at one of the new features of SQL Server called
Common Table Expressions. You see more of this when the data access layer and stored procedures
are discussed.

Using the Customer Support Site
The Customer Support Site presented in this chapter is the support home for the fictitious hardware-
selling company called Wrox Hardware. This company sells hardware from popular best-selling
manufacturers such as BNH (Brand New Hardware), Eccentric Hardware Makers, and Rocks
Hardware. To minimize the costs for the support department, most of the company’s support system
is web-based. With the Customer Support Site, users can browse the product catalog with the
Product Locator to look for products and their specifications. This is useful if you want to find out if
your brand-new hand-held scanner uses AAA or simple AA batteries, for example. The Product
Locator uses drop-downs (see Figure 8-1) to allow users to drill down in a hierarchy of categories to
locate the product they want to find out more about.

11_749516 ch08.qxp 2/10/06 9:17 PM Page 233

Figure 8-1

In addition to the Product Locator, the site also has a Downloads section. With a drill-down mechanism
similar to the one in the Product Locator, users can quickly locate files related to their product. These
downloads range from general files such as the warranty document for all BNH products to driver files
for a specific product.

The third section of the public site, shown in Figure 8-2, is a searchable list of Frequently Asked
Questions (FAQs). These questions are not categorized as the products and downloads are but they are
searchable with a small search engine that supports Boolean logic, using AND and OR expressions.

The Customer Support Site also has a CMS that can be used by content managers to manage the prod-
ucts, downloads, and FAQs in the back-end database of the web site.

In the next section, you get a good look at the design of the Customer Support Site. You see the classes
that make up the business and data access layer of the web site and you learn how the database and its
stored procedures and user-defined functions are designed.

The section that follows digs much deeper into the site and shows you how each of the individual parts
are developed and how they interact together.

Toward the end of the chapter, you see how to install the Customer Support Site on your own server
using the supplied installer or by manually installing the necessary files.

234

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 234

Figure 8-2

Design of the Customer Support Site
Just like many of the other applications in this book, the Customer Support Site is based on a three-tier
architecture. The presentation layer consists of the ASPX pages and ASCX user controls located in the
root and a few subfolders of the site.

Both the business layer and the data access layer are stored in the special App_Code folder. To make it
easier to locate code in the right layer, the business code is stored in a subfolder called BusinessLogic,
and the data access code is hosted in the DataAccess folder. Common configuration properties, used by
the other layers, are stored in a file called AppConfiguration.vb directly in the App_Code folder.

Most of the data access is performed with <asp:ObjectDataSource> controls in the .aspx pages that
talk to the classes (through their public methods) in the business layer, which in turn forwards the calls
to methods in the data access layer. In other pages, such as the InsertUpdate pages in the Management
section, the code in the code-behind file instantiates instances of the classes from the business layer
directly, without an additional data source control.

The next section shows you each of the classes in the business layer and explains how and where they
are used. In the section that follows, you discern the design of the data access layer and the database.

235

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 235

The Business Layer
The business layer of the Customer Support Site contains five classes, each of which is used to display
categorized information on the web site. For each of the site’s main sections, Products, Downloads, and
FAQs, you’ll find an associated class in the files named after the classes they contain. So, you’ll find the
Product class in the file Product.vb, and so on. In addition to these three classes are two others, called
Category and ContentBase. The Category class is used to manage the available categories in the
database and get information about them.

The ContentBase class is the parent class of Product and Download, and is discussed next.

The ContentBase Class
A Product and a Download have a lot in common. They both have a title and a description to display the
item on the site. They also have an ID to uniquely identify each item. And finally, both are linked to a
category in the database. When you start designing these classes, your first attempt may be to code the
Product class and then duplicate the shared code in the Download class. However, this design has a few
drawbacks. First, you need to copy and paste the code from the Product file into the Download file,
which results in a lot of superfluous work. But more importantly, when you need to make changes to the
code — for example, because you want to rename Category to CategoryId — you now have to make
these changes at two locations!

To overcome this problem, the ContentBase class is introduced. This class exposes the properties and
methods that the Product and Download (and future web content items) have in common. This class
serves as a base class that other classes can inherit from. The child classes then automatically get all the
public members from the base class. Figure 8-3 shows the ContentBase class and the two child classes
that inherit from it.

Figure 8-3

In addition to the inherited members, the child classes implement their own properties and methods.
You see what those are later when the respective classes are discussed.

236

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 236

237

Customer Support Site

Right below the class name in Figure 8-3 you see MustInherit Class. This means that the ContentBase
cannot be instantiated directly, but that you must create an instance from a child class that inherits from
ContentBase. This is exactly what you want, because there is no point in having a plain Content object
somewhere on the site. Only the child classes, like Product and Download, are useful to display on the
web site.

The public properties of the ContentBase classes were discussed briefly earlier, but the following table
lists them again, together with their data type and a description:

Property Data Type Description

CategoryId Integer The ID of the Category in the database to which the content
item belongs. This ID holds only the ID of the deepest nested
category in a hierarchy of categories. You see how this works
later.

Description String The description, or body text, of the content item.

Id Integer The ID of the content item in the database.

Title String The title of the content item.

In addition to these properties, the ContentBase class defines one method called Save. The base class
only defines the signature of the method and has been marked with the MustOverride keyword. This
way, classes that inherit from ContentBase must implement the Save method. You see how this is done
for the Product and Download classes later in the chapter.

The Product Class
The first class that inherits from ContentBase is the Product class. An instance of the Product class
represents a real-world product that a customer may have bought in the Wrox Shop. On the Customer
Support Site, the Product class is used to provide additional information about the product, like the
product specifications.

In addition to the members inherited from ContentBase, this class has the members shown in Figure 8-4.

Figure 8-4

11_749516 ch08.qxp 2/10/06 9:17 PM Page 237

The Product class extends the ContentBase class with three properties, described in the following
table:

Property Data Type Description

ImageUrl String A virtual path to an image that displays the
product.

Keywords String A comma-separated list of keywords describing
the product.

TagLine String A short and attractive description of the product.

The Product class also adds three methods (of which one is overloaded) and two overloaded constructors.
Although you can’t see it in Figure 8-4, the Save method is actually inherited from the ContentBase class,
whereas the Get and Delete methods are specific to the Product class.

The following table lists the methods for the Product class. In addition to its two constructors (the New
method), it also lists the Get, Save, and Delete methods, and two overloaded versions for
GetProductList.

Method Return Type Description

Public Sub New () n/a The default constructor of the Product class.

Public Sub New n/a An overloaded constructor that accepts a
(ByVal id As Integer) product ID that is stored in a private variable.

This overload is used when editing existing
products.

Public Shared Function Product This method retrieves a single product from the
[Get] (ByVal id As database by calling a method with the same
Integer) As Product name in the ProductDB class.

Public Overrides n/a Saves a product in the database by calling into
Sub Save () the ProductDB class.

Public Shared Sub n/a Deletes a product from the database by calling
Delete (ByVal id As into the ProductDB class.
Integer)

Public Shared Function DataSet Returns a list with all the available products in
GetProductList () As the database. This method is used exclusively
DataSet in the Management section.

Public Shared Function DataSet Returns a list with products for the specified
GetProductList (ByVal category.
categoryId As Integer)
As DataSet

238

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 238

Because just like the Product class the Download class inherits from ContentBase, it should come
as no surprise that the Download class has some methods in common with the Product class. The
similarities and differences of the Download class are discussed next.

The Download Class
The Download class represents files that customers can download from the Wrox Hardware Customer
Support Site. The downloads on the site are categorized using a three-level category hierarchy so it’s
easy to find relevant download files. Just like the Product class, Download inherits from ContentBase
and adds a few properties and methods of its own (see Figure 8-5).

Figure 8-5

The DownloadUrl property is a string holding a virtual path to a file that can be downloaded by a cus-
tomer in the front end of the site. A content manager can upload a file in the Management section and
then its path is saved in this property.

Just like the Product class, the Download class has Get, Save, and Delete methods and two over-
loaded constructors that work pretty much the same. Refer to the section “The Product Class” for a
description of these methods.

In addition to these methods, the Download class has a method called GetDownloadList that returns a
list with downloads as a DataSet.

The Faq Class
The Faq class represents a frequently asked question that is displayed on the web site and is stored in
the customer support database. Though at first anFAQ may seem to be a good candidate to inherit from
ContentBase as well, this isn’t the case. First of all, the FAQ doesn’t have a CategoryId. Also, the FAQ
doesn’t have a title, but does have two Question properties and an Answer property. These differences
make it hard (or at least very awkward) to have an FAQ inherit from ContentBase. Therefore, the Faq
class is implemented as a stand-alone class with the members shown in Figure 8-6.

239

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 239

Figure 8-6

The following table describes each of the public properties of the Faq class:

Property Data Type Description

Answer String The answer to the question.

QuestionLong String A longer and more detailed version of the
question.

Id Integer The ID of the content item in the database.

QuestionShort String A short summary of the question used in the
list with Frequently Asked Questions.

Just like a Product and a Download, the Faq class has methods to get, save, and delete FAQs from the
database. It also has two overloaded methods, outlined in the following table, to retrieve a list of FAQs
from the database. One is used to get the questions based on a search term, and the other returns an
unfiltered list of FAQs in the database.

Method Return Type Description

Public Shared Function DataSet Returns a list with FAQs based on search
GetFaqList (ByVal Term. This search term can holdsomething
searchTerm As String) like “Printer AND 850 T5”.
As DataSet

Public Shared Function DataSet Returns a list with all available FAQs. This
GetFaqList () As DataSet method is used exclusively in the Management

section.

Earlier you saw that the ContentBase class has a property CategoryId to link a content item to a cate-
gory. To work with those categories, the Category class has been designed.

240

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 240

The Category Class
The Category class (see Figure 8-7) is used to retrieve and create categories in the database. These categories
in turn are used to enable a user to quickly locate a product or download in the front end of the site.

Figure 8-7

The Category class has no public or private properties and exposes only shared and public methods
(other than its private constructor) to retrieve categories from the database and to create new categories.
The following table lists all three methods and describes their purpose:

Method Return Type Description

Public Shared Sub n/a Creates a new category in the database. The
CreateCategory (ByVal parentCategoryId passed to this method
description As String, must contain the ID of an existing category in
ByVal parentCategoryId the database, or must be less than one to
As Integer) create a new root category.

Public Shared Function DataSet Returns all the parent categories for a given
GetCategoryPath (ByVal child category. This is useful to determine all
categoryId As Integer) parent categories of a product or download
As DataSet as only the deepest child’s CategoryId is

saved.

Public Shared Function DataSet Returns a list with categories as a DataSet
GetCategoryList (ByVal with an ID and a Description column. When
parentCategoryId As parentCategoryId is less than one, the root
Integer) As DataSet categories are returned. Otherwise, the child

categories for the given parent category are
returned.

Now that you have seen all the classes that make up the business layer, it’s time to look at the classes
and database tables that make up the data access layer.

The Data Access Layer
Because many of the classes in the business layer work with data that is stored in the database, it should
come as no surprise that for most of those classes there is an associated class in the data access layer (in
the DataAccess folder, which in turn is located in the special App_Code folder in the root of the site) with
a name ending in DB. The only exception is the ContentBase class. Being the parent for the Product and

241

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 241

Download classes, the ContentBase class does not have implementation code that requires database
access, so it also doesn’t need a companion ContentBaseDB class. The other four classes that do access
the database are described in the sections that follow.

The ProductDB Class
The ProductDB class implements the same four methods you saw earlier for the Product class.
However, the methods in the ProductDB class, shown in Figure 8-8, perform the real work in getting the
data in and out of the database. Notice there isn’t an overloaded version of the GetProductList in this
database class. The Product class does have two overloaded versions, but calls the same, single method
in the ProductDB class.

Figure 8-8

The methods listed in Figure 8-8 are discussed in the following table:

Method Return Type Description

Public Shared Sub Delete n/a Deletes a product from the database.
(ByVal id As Integer)

Public Shared Function Product Retrieves a single product instance
[Get] (ByVal id As Integer) from the database. Returns Nothing
As Product when the requested product could not

be located.

Public Shared Function DataSet Returns a list with products from the
GetProductList (ByVal database. When CategoryId is -1, all
categoryId As Integer) products are returned.
As DataSet

Public Shared Sub Save n/a Saves the product in the database. This
(ByVal the Product As is the only instance method, because
Product) all the others are marked as Shared.

This instance method saves the under-
lying values of the product in the
database.

The DownloadDB class, which has a lot in common with the ProductDB class, is discussed next.

242

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 242

The DownloadDB Class
Just as the Product and Download classes are very similar, so are the ProductDB and DownloadDB classes.
This means that this class implements similar Get, Save, Delete, and GetDownloadList methods, as
illustrated in Figure 8-9.

Figure 8-9

The behavior and description for most of these methods are identical to those of the ProductDB class. Refer
to the table with methods for the ProductDB class for a description, replacing Product with Download in
any of the names and descriptions you see. The only exception in the method names is GetDownloadList.
Similar to GetProductList, this method returns a list with downloads as a DataSet.

The FaqDB class
Although the Faq class does not inherit from ContentBase, it does implement the same methods that
the Product and Download classes have. Therefore, the FaqDB class (see Figure 8-10) implements the
methods Get, Save, Delete, and GetFaqList.

Figure 8-10

In addition to those familiar methods, the FaqDB class also has a BuildWhereClause method. This method,
marked as Private in the code so it’s not accessible from outside the FaqDB class, accepts a search term and
returns a fully formatted WHERE clause that can be used in a stored procedure. Although this potentially
opens up your code for SQL injection attacks, this method deploys some defensive code to avoid this secu-
rity risk. You see how this works later.

The CategoryDB class
The final class in the data access layer you should look at is the CategoryDB class. Just as its counterpart
in the business layer, this class implements the three methods depicted in Figure 8-11 for working with
categories.

243

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 243

Figure 8-11

These methods are described in the following table:

Method Return Type Description

Public Shared Sub n/a Creates a new category in the database.
CreateCategory (ByVal The parentCategoryId passed to this
description As String, method must contain the ID of an existing
ByVal parentCategoryId category in the database, or must be less
As Integer) than one to create a new root category.

Public Shared Function DataSet Returns all the parent categories for a
GetCategoryPath (ByVal given child category. This is useful to
categoryId As Integer) determine all parent categories of a
As DataSet product or download, because only the

deepest child categoryId is saved.

Public Shared Function DataSet Returns a list with categories as a DataSet
GetCategoryList (ByVal with an ID and a Description column.
parentCategoryId As When parentCategoryId is less than
Integer) As DataSet one, the root categories are returned.

Otherwise, the child categories for the
given parent category are returned.

In addition to the classes in the DataAccess folder, the data access layer also contains the actual database
that consists of four database tables and a number of stored procedures.

The Data Model
The database for the Custom Support Site features four tables, 16 stored procedures, and two user-defined
functions. Some of the tables in the database are related to each other, as shown in Figure 8-12.

Both the Product and the Download tables have a relation with the Category table through their
CategoryId column. However, you should also note that the Category table has a relation with itself. The
ParentCategoryId column is related to the Id column in the same table. This way, a category can be related
to another category, called its parent category, therefore creating a hierarchy or tree structure of categories.
To retrieve the hierarchical data from the database, the application makes use of Common Table
Expressions, which are discussed later.

Although the names of the tables and their columns are pretty self-explanatory, the following tables list
each of them and describe their purpose and data type.

244

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 244

Figure 8-12

The Product Table
This table describes the contents of the Product table in the Customer Support Site database:

Column Name Data Type Description

Id int The unique ID of the product in the database. The ID
is generated automatically whenever a new product is
inserted.

Title nvarchar(100) The title of the product.

TagLine nvarchar(MAX) A longer title or a subtitle for the product that can also
hold a short marketing message for the product.

Description nvarchar(MAX) The full product description, holding the product’s
specification, for example.

CategoryId int The ID of the category to which the product belongs.

ImageUrl nvarchar(255) The virtual path to an image showing the product.

Keywords nvarchar(200) Holds a comma-separated list with keywords applicable
to the product.

The next table describes the five columns of the Download table in the database.

The Download Table
The Download and the Product tables have a lot in common. The columns that these tables share map
exactly to the public properties of the parent ContentBase class that Product and Download inherit from.

245

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 245

Column Name Data Type Description

Id int The unique ID of the download in the database.
The ID is generated automatically whenever a new
download is inserted.

Title nvarchar(100) The title of the download, briefly describing the file
that can be downloaded.

Description nvarchar(MAX) The full download description.

CategoryId int The ID of the category to which the download
belongs.

DownloadUrl nvarchar(255) The virtual path to a downloadable file for this
download.

It is possible to simulate inheritance in the database by creating a generic ContentBase table that stores
information for both a product and a download. Then the other tables store their own data (such as
ImageUrl for a product and DownloadUrl for the Download table) together with a foreign key pointing
to the ContentBase table that holds the base data for the record like the Title and Description.

However, such a solution can result in a messy table structure pretty quickly. Also, the extra amount of
work it takes to insert data in two tables and to keep those tables in sync makes this solution a less
attractive alternative. Therefore, it was decided to duplicate the shared columns in both the Product and
the Download tables.

The Faq Table
The Faq table stores the data for the Frequently Asked Questions and has the following four columns:

Column Name Data Type Description

Id int The unique ID of the FAQ in the database. The ID
is generated automatically whenever a new FAQ is
inserted.

QuestionShort nvarchar(200) A short version of the question of the FAQ.

QuestionLong nvarchar(MAX) A longer version of the question, possibly providing
more background information about the question.

Answer nvarchar(MAX) The answer to the question.

Now, on to the final table in the Customer Support Site database: the Category table.

The Category Table
The Category table stores the categories used throughout the site. This table has a relation to itself through
its ParentCategoryId column that is related to the Id column.

246

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 246

Column Name Data Type Description

Id int The unique ID of the category in the database. The ID
is generated automatically whenever a new category is
inserted.

Description nvarchar(100) The description of the category.

ParentCategoryId int The ID of the category that the current category relates
to. When this column is NULL the category is a root
category and has no parent of its own.

Stored Procedures and User-Defined Functions
The Customer Support Site interacts with the database exclusively with stored procedures. You’ll find no
SQL statements directly in the ASPX pages or their code-behind files. This way, the site is easier to maintain
because if you need to make a change to the data structure, you need to make the change at exactly one
place, the stored procedure, and not in all of the pages that are accessing the database.

To abstract some functionality even further, two user-defined functions (UDFs) were created. A UDF is
essentially a reusable piece of T-SQL code that can be called by other code, including stored procedures,
and that can return various types of data, including scalar values (such as a number or a piece of text)
and entire tables. In the case of the Customer Support Site, the two UDFs return a custom table with an
ID and a Description column holding categories from the Category table. You’ll find the functions, called
fnSelectChildCategories and fnSelectParentCategories, under the Functions node of the
database on the Database Explorer in Visual Web Developer. The inner workings of these functions are
discussed later.

Helper Classes
In addition to the code in the business and data access layers, the Customer Support Site makes use of
one helper class called AppConfiguration that is saved in the App_Code folder directly.

The AppConfiguration Class
The AppConfiguration class provides configuration information to code in both the presentation and
data access layers. It has three public and shared read-only properties that provide configuration infor-
mation stored in the Web.config file (see Figure 8-13).

Figure 8-13

247

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 247

The ConnectionString property is used by the methods in the data access layer to connect to the
database. The DefaultSiteDescription property is used to automatically inject a default description
of the site in <meta> tags in the head of the page. You see how this is used when the master page file for
the site is discussed.

The final property of this class is called UploadFolder. This property returns a virtual path to the folder
that is used to save files that are uploaded in the Management section. To make maintenance simpler, the
UploadFolder property uses the same key used by the FCKeditor. This means that files that are uploaded
through the editor and through the file upload controls on the page end up in the same folder.

Code and Code Explanation
Before beginning discussion of the more advanced features of the Customer Support Site, such as the
Product Locator and the Download List, you need to take a look at a few important files first. All of
these files are located in the root of the web site.

Root Files
In the root of the web site you find five important files: two master pages with a .master extension, the
Default.aspx page, the Global.asax file, and the Web.config file, which contains a few settings used by
other pages, so this file is discussed first.

Web.config
Similar to other applications you have seen in this book, the Web.config file contains a few custom keys,
the connection string for the application, and configuration information for the skin used in the site. The
two custom keys under the <appSettings> node are used to set the path where images and other
uploads are stored and to determine the default site description text.

Also inside Web.config, you’ll find the <pages> node. This key sets the site theme to CustomerSupport,
a custom theme stored inside the App_Themes folder. The theme has just a single file called
GridView.skin that defines the look and feel of each GridView in the site.

All the other settings in Web.config should be familiar by now, so they aren’t discussed in any more detail.

Global.asax
Just as in Chapter 6, the Global.asax contains code that can send e-mail whenever an error is raised in
the site. The code is identical to that in Chapter 6 so refer to that chapter’s “Code and Code Explanation”
section in case you want to know how the code works.

Default.aspx
This is the homepage for the site and is based on the MainMaster master page (discussed next). The page
just has some text welcoming the user. This page would be a good place to promote some of the new
products that Wrox Hardware offers, or have a list with new additions to the site.

248

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 248

Master Pages
The Customer Support Site has two almost identical master pages: one for the public area of the site and
one for the Management section. The biggest difference between the two is the user control of type
ManagementMenu, which is called ManagementMenu1 in the code. This menu holds the items for the
administrative interface that is loaded by default in the Management master page. Another difference is
the way metadata is added to the <head> section of the public master page automatically.

To see how this works, open up the file MainMaster.Master.vb in the root of the site, which is the code-
behind file for the public master page. Refer to the section “Setting up the Customer Support Site” near
the end of this chapter for instructions on installing the application so you get access to its code. You can
choose either the automated or the manual installation process. With both methods, you’ll end up with a
folder that holds the files for the application, including the code-behind file MainMaster.Master.vb. In this
code file, you see two properties called Keywords and Description. These properties can be accessed
from code outside the MainMaster class because they are marked as Public. The Page_Load of the mas-
ter page uses these properties to dynamically change some <meta> tags in the head of the page:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load

Dim metaTag As HtmlMeta = New HtmlMeta()
If Not Keywords Is String.Empty Then
metaTag.Name = “keywords”
metaTag.Content = Keywords
Page.Header.Controls.Add(metaTag)

End If

metaTag = New HtmlMeta()
metaTag.Name = “description”
If Not Description = String.Empty Then
metaTag.Content = Description

Else
metaTag.Content = AppConfiguration.DefaultSiteDescription

End If
Page.Header.Controls.Add(metaTag)

End Sub

This code first creates a new instance of HtmlMeta, a class designed specifically to represent metadata
for your page. This class exposes a Name and a Content property that map directly to the Name and
Description attributes you see in <meta> tags. The keywords meta tag is filled with the value from the
public Keywords property defined in the same code-behind file, but only if it has a value. The Description
tag employs a more sophisticated solution. The code first checks to see if the Description property has
a value. If it does, that value is used. If the property hasn’t been set, the default description is retrieved
by calling AppConfiguration.DefaultSiteDescription, which in turn gets the requested value
from the Web.config file.

When both the Name and Content properties have been set, the HtmlMeta tag object is added to the
Controls collection of the Header, which is also a control itself. When the page is finally rendered, the
HtmlMeta object renders itself as an HTML <meta> tag within the <head> section of the page. Given the
previous example this results in HTML like this:

249

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 249

<head>
<title>Welcome to the Wrox Hardware Support Site</title>
<meta name=”description” content=”Wrox Hardware - The number one hardware

shop in the world” />
</head>

Pages that use the master page can now access the public properties when the page loads. However, by
default you cannot access these properties directly. The default Master property that a page exposes is
of type System.Web.UI.MasterPage. This class does not have a Keywords property. To be able to
access custom properties of a master page, you need to set the MasterType directive in the page where
you want to access these properties. One page that implements this is the ProductDetails.aspx page
located in the ContentFiles folder. This is the code that page has at the top of its markup file:

<%@ MasterType VirtualPath=”~/MainMaster.Master” %>

With the MasterType set, the page can now access the Keywords property of the master page in its Load
event:

Me.Master.Keywords = myProduct.Keywords

This simply accesses the public Keywords property of the master page. Because the MasterType has been
set, Visual Web Developer is now aware of the additional methods and properties of the master page, so
you get full IntelliSense.

With the Keywords property set on the master page, the <meta> tags are added to the page automatically
when the page gets rendered.

The keywords itself are added to the Product in the page InsertUpdateProduct.aspx in the content man-
agement section of the site, which is discussed later in this chapter.

With this bit of code in the master file you have created a very flexible way to inject metadata in the head
of the page. By default, the master page makes sure that each page has at least a description meta tag
that gets its value from the Web.config file. However, pages that need to set a more detailed description
or keywords can do so now, simply by accessing the public properties of the master page. It’s also easy
to expand the code in the master page so it adds other meta tags like copyright, author, and revisit-after.

Other Files and Folders
In addition to the files in the root, the Customer Support Site consists of a lot of other files and folders. A
little later in this section you learn about the files in the ContentFiles folder because those make up most
of the public interface of the web site. This section also briefly touches on some of the files in the
Management folder that contains the content management system for the site.

That leaves you with a few files and folders that need a short explanation:

❑ Bin: This folder contains the DLL used by the FCKeditor in the Management section.

❑ Controls: This folder stores the user controls that are used throughout the site:

❑ The ManagementMenu.ascx control is used in the Management folder and contains
links to each of the four important management pages.

250

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 250

❑ Footer.ascx is used on every page and is therefore added to the MainMaster and
ManagementMaster pages. It contains a copyright notice and a link to the web site, but
of course you can change it to whatever you see fit.

❑ The Header.ascx control contains the logo. To make it easier for a user to browse to the
homepage, the whole logo is clickable and links to the root of the site.

❑ The MainMenu.ascx control contains a simple unordered list with a few list items that
make up the menu. A couple of CSS selectors in the style sheet then change the appearance
of these list items so they look like a true menu.

❑ Css: The Css folder contains two CSS files: Core.css and Styles.css. Core.css contains all the main
CSS elements that control the looks and positioning of the web site. Styles.css contains custom
style classes that influence appearance of smaller elements, like buttons, and the headers and
rows from items in a GridView control.

❑ FCKeditor: This folder contains the FCKeditor used in the Management section. Refer to
Chapter 6 for more information about this editor.

❑ Images: Contains the images used in the design of the web site, such as the logo. Note that this
is not the folder where uploaded images and files are stored.

❑ UserFiles: Used by the FCKeditor and the Management section to store uploaded images of
products, downloads, and so on.

Now that you have seen most of the additional files in the web site, it’s time to turn your attention to the
actual pages that make up the Wrox Hardware support site. The next section starts off by discussing the
Product Locator, which enables a user to find a product by choosing categories from a drop-down. The
section that follows the Product Locator describes how the Downloads List works, which allows users to
find downloadable files for their products. Finally, you see how the FAQ page works where users can
search the list with frequently asked questions.

The Product Locator
Despite its fancy name, the Product Locator (located in ContentFiles/Products.aspx) is actually a pretty
simple page. It has three drop-downs that allow a user to drill down in a list with categories. The first
drop-down displays categories from level one, and the second drop-down then displays all categories of
level two that are a child of the selected parent. This works the same for the third drop-down. To under-
stand how this works, look at the markup for the Products page:

<asp:DropDownList ID=”lstCategoryLevel1” runat=”server”
DataSourceID=”odsCategoryLevel1” DataTextField=”Description”
DataValueField=”Id” AutoPostBack=”True” AppendDataBoundItems=”True”>

<asp:ListItem Value=””>Select a category</asp:ListItem>
</asp:DropDownList>
<asp:DropDownList ID=”lstCategoryLevel2” runat=”server”

DataSourceID=”odsCategoryLevel2” DataTextField=”Description”
DataValueField=”Id” Visible=”False” AutoPostBack=”True” >

</asp:DropDownList>
<asp:DropDownList ID=”lstCategoryLevel3” runat=”server”

DataSourceID=”odsCategoryLevel3” DataTextField=”Description”
DataValueField=”Id” Visible=”False” AutoPostBack=”True”>

</asp:DropDownList>

251

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 251

In this code, some of the important properties are highlighted so they are easier to see. In the first drop-
down, AppendDataBoundItems has been set to True, to ensure that any static item, like the “Select a
category” item that is added in the markup of the page, is not replaced by the items from the database.
In addition, AutoPostBack on all controls is set to True to ensure the page refreshes when the user
chooses a new item from one of the drop-downs. Initially when the page loads, the second and third
drop-downs are hidden by setting Visible to False. There is some code in the code-behind for the
page that makes the drop-downs visible when appropriate. That code is examined a little later.

Another important property of the drop-downs is the DataSourceID. The first drop-down points to a
<asp:ObjectDataSource> control called odsCategoryLevell, the second to odsCategoryLevel2,
and the third to odsCategoryLevel3. All three ObjectDataSource controls are using the same
method and class name. The following snippet shows the markup for the first ObjectDataSource:

<asp:ObjectDataSource ID=”odsCategoryLevel1” runat=”server”
SelectMethod=”GetCategoryList” TypeName=”Category”>

<SelectParameters>
<asp:Parameter Name=”parentCategoryId” Type=”Int32” />

</SelectParameters>
</asp:ObjectDataSource>

The new <asp:ObjectDataSource> controls are a great way to enforce good n-tier architecture in your
site, resulting in scalable and maintainable web pages. By using an ObjectDataSource control, you
don’t clutter your pages with names of stored procedures or worse, entire SQL statements. Instead, you
point the control to a class name and a SelectMethod in the business layer, and when the control is told
to get its data, it calls the method you specified. In the preceding code example, this ObjectDataSource
control calls the GetCategoryList method of the Category class in the file Category.vb. This method
looks like this:

Public Shared Function GetCategoryList(ByVal parentCategoryId As Integer) _
As DataSet

Return CategoryDB.GetCategoryList(parentCategoryId)
End Function

What’s important about this method is the Shared keyword. This means that the method runs on a type
(the Category class in this example) rather than on an instance of that type. Because the method is shared,
the ObjectDataSource doesn’t need a reference to an instance of Category but can call the Get
CategoryList method directly. If the method isn’t marked as Shared, the ObjectDataSource auto-
matically creates an instance of the Category class by calling its default parameterless constructor. If the
method isn’t marked as Shared and the class has no default parameterless constructor, the ObjectData
Source cannot create an instance of your class and call the method. However, you can still manually
assign the ObjectDataSource an instance of your class in its ObjectCreating event. You see how this
works in Chapter 12.

The GetCategoryList method simply forwards the call to a method with the same name in the
CategoryDB class:

Public Shared Function GetCategoryList(ByVal parentCategoryId As Integer) _
As DataSet

Dim myDataSet As DataSet = New DataSet()
Using myConnection As New SqlConnection(AppConfiguration.ConnectionString)
Dim myCommand As SqlCommand = New SqlCommand(_

252

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 252

“sprocCategorySelectList”, myConnection)
myCommand.CommandType = CommandType.StoredProcedure

If parentCategoryId > 0 Then
myCommand.Parameters.AddWithValue(“@parentCategoryId”, parentCategoryId)

Else
myCommand.Parameters.AddWithValue(“@parentCategoryId”, DBNull.Value)

End If

Dim myDataAdapter As SqlDataAdapter = New SqlDataAdapter()
myDataAdapter.SelectCommand = myCommand
myDataAdapter.Fill(myDataSet)
myConnection.Close()
Return myDataSet

End Using
End Function

This code looks very similar to the code you saw in previous chapters. The only thing that needs explaining
is the code that assigns the parameter for the stored procedure with AddWithValue. When the parent
CategoryId passed to this method is larger than zero, its value is sent to the stored procedure that in turn
gets all the categories with a parentCategoryId of that value. When the value is less than one, the value
of DBNull is passed to the procedure. In that case, the stored procedure returns all the categories that have
NULL for their ParentCategoryId columns, which are all the root categories.

To see how this all fits together, taker another look at the Products page. The first drop-down is bound to
odsCategoryLevel1, which has a <SelectParameter> with a name of parentCategoryId and a type
of Int32. You can also see this parameter never gets a value in the code, so it defaults back to the intrinsic
default value of an integer: zero. This is why the ObjectDataSource for the first drop-down returns all
the root categories. The second and third data source controls have a <SelectParameter> that is bound
to a drop-down like this:

<asp:ObjectDataSource ID=”odsCategoryLevel2” runat=”server”
SelectMethod=”GetCategoryList” TypeName=”Category”>

<SelectParameters>
<asp:ControlParameter ControlID=”lstCategoryLevel1” Name=”parentCategoryId”

PropertyName=”SelectedValue” Type=”Int32” />
</SelectParameters>

</asp:ObjectDataSource>

When this control is about to get the data, it gets the SelectedValue from the previous drop-down, which
is the drop-down with the root categories. This ID is then stored in the SelectParameter of the Object
DataSource control and eventually passed to GetCategoryList, which gets all the child categories for
the selected parent category.

The same process is repeated for the third drop-down, but this time the SelectedValue from the second
drop-down is retrieved and passed to GetCategoryList to get the categories at the third level.

The current implementation of the three linked drop-down controls requires a postback to the server each
time a new category is chosen in one of the lists. To improve the page’s load time and the user experience
you could implement these linked lists using AJAX — a combination of JavaScript, XML, and server-side
techniques — to get just the data for the related drop-downs. The beauty of this is that the entire page is

253

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 253

not refreshed, but only the contents of the drop-down controls. This results in a flicker-free page and
faster population of the drop-down controls. Get a copy of Wrox’s Professional Ajax for more information
about AJAX.

The final step in the Product Locator is retrieving the products that are related to the category chosen in
the third drop-down. Once again, this is done with an ObjectDataSource control:

<asp:ObjectDataSource ID=”odsProducts” runat=”server”
SelectMethod=”GetProductList” TypeName=”Product”>

<SelectParameters>
<asp:ControlParameter ControlID=”lstCategoryLevel3” Name=”categoryId”

PropertyName=”SelectedValue” Type=”Int32” />
</SelectParameters>

</asp:ObjectDataSource>

This ObjectDataSource control has its SelectMethod set to a method in the Product class. This
means when the control must get its data, it fires GetProductList in the Product class and sends it the
SelectedValue of the third drop-down (lstCategoryLevel3). GetProductList in the Product class
simply delegates its responsibility to GetProductList in the ProductDB class and passes it the
categoryId.

That method is similar to the GetCategoryList method you saw before in that it fires a stored procedure
and then returns the results as a DataSet.

The only difference is the way the categoryId is passed to the database:

If categoryId = -1 Then
myCommand.Parameters.AddWithValue(“@categoryId”, DBNull.Value)

Else
myCommand.Parameters.AddWithValue(“@categoryId”, categoryId)

End If

When categoryId is not -1, its value is sent to the stored procedure with the AddWithValue method.
When it is -1, the value of DBNull is sent instead. This distinction is necessary because the GetProduct
List is also used in the Management section of the site. The page that displays the products displays all
of them regardless of the category. To that end, the Product class has an overloaded method that has no
parameters and sends the value of -1 to the method in the ProductDB class like this:

Public Shared Function GetProductList() As DataSet
Return ProductDB.GetProductList(-1)

End Function

This value of -1 passed to GetProductList eventually results in DBNull.Value being passed to the
stored procedure. In that procedure, the following code is used in the WHERE clause to limit the list with
products:

FROM
PRODUCT

WHERE
CategoryId = @categoryId
OR @categoryId IS NULL

ORDER BY
Title

254

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 254

When @categoryId has a value, the first line in the WHERE clause code returns all records with a Category
Id equal to @categoryId. This makes sure the correct products are returned in the front end of the site
when a valid child category has been chosen. The second line of the WHERE statement compares the parameter
@categoryId against the value NULL. This is the case in the Management section where NULL is passed to
the stored procedure. Now all products are returned, regardless of their CategoryId. This is a quick trick
to distinguish between the front-end and the back-end functionality without the need for complex
IF/THEN logic or multiple stored procedures.

The final step in the Product Locator is displaying the items returned from the database. The page has an
<asp:DataList> control called dlProducts that is bound to the datasource odsProducts you saw
earlier. This DataList has an <ItemTemplate> that displays the fields like the product’s title, tag line,
image, and a link to the ProductDetails.aspx page:

<asp:DataList ID=”dlProducts” runat=”server” DataKeyField=”Id”
DataSourceID=”odsProducts” EnableViewState=”False” >

<ItemTemplate>
<h2>
<%# Eval(“Title”) %>

</h2>
<p class=”Summary”>
<asp:Image ID=”productImage” runat=”server”

ImageUrl=’<%# Eval(“ImageUrl”) %>’ ImageAlign=”Right” />
<%# Eval(“TagLine”) %>

</p>

<asp:HyperLink ID=”hyperReadMore” runat=”server”

NavigateUrl=’<%# “ProductDetails.aspx?Id=” & Eval(“Id”) %>’
Text=”Read More...” />

</ItemTemplate>
</asp:DataList>

The ProductDetails.aspx page uses Product.Get(productId) to get an instance of a product and
displays its properties on the page. You see the product’s keywords being added to a <meta> tag in the
master page discussed previously. When you look at the Get method in the business layer folder, you’ll
notice the square brackets around the method’s name:

Public Shared Function [Get](ByVal id As Integer) As Product
Return ProductDB.Get(id)

End Function

Because Get is a reserved word in Visual Basic .NET, you have to surround the name with the brackets
to tell the compiler to ignore the special meaning of the Get keyword. If you find this makes your code
look awkward, simply rename the method to something like GetItem or GetProduct. All Get methods
in the business and data access layer have the square brackets around their name.

Now that you have seen how the product locator works, it’s time to look at a bit more advanced code in
the Downloads page. That page uses the same concepts as the Product Locator, but it has a few twists
that are worth looking at in more detail.

255

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 255

The Downloads List
At first glance, the Downloads.apsx file in the ContentFiles folder looks almost identical to the Product
page. Though this is certainly true for the markup portion of the page, the code-behind for the page
contains code that makes it behave entirely differently. This code is needed because the Downloads page
displays downloadable files that are related to the currently chosen category at each level and all of its
parent and child levels. With the Products page, you have to make a selection in all of the three drop-downs
first because the DataList control used to display the products only retrieves products that are related
to the final and deepest category you selected.

The Downloads page enables a content manager to link a certain downloadable file to only the main
category, or to the second or third category. For example, the Warranty Card or Terms and Conditions
document may apply to all products that Rocks Hardware creates so it’s logical to bind those downloads
to a category in the root only. When users then select Rocks Hardware from the drop-down they expect
to see the card and terms appear. However, they also expect the drivers for the 850 T5 Printer and for the
3D Printer 740 to appear because ultimately, these drivers fall under the Rocks Hardware category as
well. If they then select the category Power Printers, they’ll expect that all downloads related to the other
category, 3D Printers, will disappear. The Warranty Card and the drivers for the 850 T5 Printer should
remain visible, because they still fall under the path of Rocks Hardware and Power Printers.

If you’re confused by this, look at Figure 8-14, which displays the hierarchy of some of the categories in
the database. The diagram focuses on the Rocks Hardware category, so it doesn’t display the children for
the other two categories.

Figure 8-14

From this diagram you can see that Rocks Hardware has two child categories: 3D Printers and Power
Printers. Each of these categories has three child records of its own. When you select Rocks Hardware as
the first category, the Downloads list displays all records that are related to Rocks Hardware, including its

BNH
Manufacturers

Rocks
Hardware

Eccentric
Hardware Makers

Power
Printers

850

850 T5

V70

740

940

S60

3D
Printers

256

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 256

children and their children. If you select the Power Printers from the second drop-down, you’ll see records
that belong to the root category Rocks Hardware (like the Warranty Card), the Power Printers, and all of its
child categories. The list no longer displays records that are linked to the 3D Printers category. Finally, if
you select the 850 T5 from the last drop-down, you’ll see the downloads that are linked to that category
directly, or to its parent or grandparent but no longer those related to the 850 or V70 category.

Hierarchical data selection as in the preceding example has always been difficult in SQL Server, until the
release of SQL Server 2005, which introduces a concept called Common Table Expressions (CTE). A CTE is
a temporary result with a name that can be used in other expressions and code. It’s a bit like an in-memory
table that you can link to other tables. The good thing about CTEs is that they support recursion, which
allows you to perform very powerful queries with just a few lines of code.

To see CTEs at work, you need to take one step back and look at the source for the ObjectDataSource
control in the Downloads page and see how it gets its data:

<asp:ObjectDataSource ID=”odsDownloads” runat=”server”
SelectMethod=”GetDownloadList” TypeName=”Download”>

<SelectParameters>
<asp:ControlParameter ControlID=”lstCategoryLevel1” Name=”categoryId”

PropertyName=”SelectedValue” Type=”Int32” />
<asp:Parameter Direction=”InputOutput” Name=”recordsAffected” Type=”Int32” />

</SelectParameters>
</asp:ObjectDataSource>

So far, not much is new. The data source control is linked to the GetDownloadList method in the
Download class. You also see a recordsAffected parameter that returns the number of products
returned from the database. You see where this is used later.

GetDownloadList gets its records from a method with the same name in the DownloadDB class, counts
the number of records and assigns that to an output parameter, and then returns the DataSet like this:

Public Shared Function GetDownloadList(ByVal categoryId As Integer, _
ByRef recordsAffected As Integer) As DataSet

Dim dsDownloads As DataSet = DownloadDB.GetDownloadList(categoryId)
recordsAffected = dsDownloads.Tables(0).Rows.Count
Return dsDownloads

End Function

The GetDownloadList method in the DownloadDB class has code similar to the GetProductList
method you saw earlier. It’s the stored procedure that gets the requested downloads where things get
interesting (and a bit more complicated). Take a look at the SELECT statement for that procedure:

SELECT TOP 100
Id,
Title,
Description,
CategoryId,
DownloadUrl

FROM
Download

WHERE
CategoryId IN
(

257

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 257

SELECT DISTINCT Id FROM fnSelectChildCategories(@categoryId)
UNION
SELECT DISTINCT Id FROM fnSelectParentCategories(@categoryId)

)
OR @categoryId IS NULL

ORDER BY
Title

The first part, the SELECT and the FROM clause, looks pretty normal, and so does the ORDER BY clause.
It’s the WHERE clause that looks odd. First of all, you see an IN statement. The IN statement in the T-SQL
language is a convenient way to select multiple records; for example, by their ID. The following SELECT
statement returns downloads in the categories with in ID of 3, 7, or 8:

SELECT Id, Description FROM Download WHERE CategoryId IN (3, 7, 8)

The second part of the WHERE clause uses a UNION statement to combine the results of the two inner
SELECT statements. Ignoring the actual implementation of the two SELECT statements for now, assume
that the first SELECT returns something like 3, 7, 8 and the other SELECT returns 4, 7, 9. The end
result for the outer WHERE clause is then

WHERE CategoryId IN (3, 4, 7, 8, 9)

Notice that the duplicate values (7) have been removed automatically. If you don’t want that to happen,
use UNION ALL instead.

Now on to the hardest part: fnSelectChildCategories and fnSelectParentCategories. These two
are user-defined functions (UDFs) that return a table to the calling code. They also accept a parameter of
type int. These functions are capable of returning the parent IDs or the child IDs plus its own ID of a given
category. So, given Figure 8-14, imagine you called fnSelectParentCategories with the ID of the category
V70; you’ll get the IDs of the categories V70, Power Printers, and Rocks Hardware. To see how this works,
take a look at the fnSelectParentCategories function that returns a category’s parents:

CREATE FUNCTION fnSelectParentCategories
(
@categoryId int

)

RETURNS @theCategoryTable TABLE (Id int, Description nvarchar(100))

AS

BEGIN

WITH CategoriesCte(Id, Description, ParentCategoryId)
AS
(
SELECT Id, Description, ParentCategoryId
FROM Category
WHERE Id = @categoryId

UNION ALL

SELECT C.Id, C.Description, C.ParentCategoryId

258

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 258

FROM Category AS C
JOIN CategoriesCte AS E
ON C.Id = E.ParentCategoryId

)

INSERT INTO @theCategoryTable (Id, Description)
SELECT Id, Description FROM CategoriesCte

RETURN

END

First, the function signature is defined, with the function’s name and its input parameter called
@categoryId. The RETURNS statement that follows tells calling code that this function returns a table
object with an ID and a Description column. The table returned from this function can be used like any
other normal table; you can select from it, join it with other tables, and so on.

The second part of the function might be new to you, so it’s important to look at it closely. The WITH
statement indicates the start of a Common Table Expression (CTE). This code example shows a recursive
CTE, although it’s also possible to use CTEs without recursion.

A recursive CTE consists of two parts: the anchor member and the recursive member. In the preceding code,
the first SELECT statement is the anchor member. When the function is executed, this SELECT statement
is fired first. Then for each record in the result set of that expression, the recursive member is triggered.
Then for each record that the recursive member added to the result set, the recursive member is triggered
again, until no more records are encountered.

Given the example of the V70 printer again, look at Figure 8-15, which displays the results from the CTE
for the category V70.

Figure 8-15

When the anchor member’s SELECT statement runs, it adds the first record to the result set with an ID of
67 and a ParentCategoryId of 64. The recursive member then runs, and selects the categories whose ID
matches the ParentCategoryId of the V70 record. This is only one record, the one for the Power Printers,
which has an ID of 64 and a ParentCategoryId of 55. This record is also added to the result set. The

Id ParentCategoryId Category Member

67 64 V70

First recursion

Second recursion

Anchor

64 55 Power Printers Recursive

55 null Rocks Hardware Recursive

259

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 259

SELECT statement is then repeated for the record that has just been added, and this time it selects the
parent category for the Power Printers record, which results in the Rocks Hardware category being
added to the result set.

The function fnSelectChildCategories, which selects a category’s child records, works in pretty
much the same way. However, because a parent category can have multiple child records that in turn
can have even more child records, the result set that is returned is likely to be larger.

The stored procedure that selects the downloads from the database selects both the child records and the
parent records using a UNION statement. This way, the full path of a category is returned, including its
parent and grandparent, and all of its children and their children. If you only want to retrieve the child
records for a category, remove the UNION statement and the line that selects from the fnSelect
ParentCategories function from the stored procedure sprocDownloadSelectList.

Now that you have seen how the stored procedure sprocDownloadSelectList gets its records from the
database, the next part you need to look at is how the Downloads page is able to figure out for which selected
drop-down it should return records. Take another look at the ObjectDataSource that gets the downloads,
but this time focus on the <SelectParameters> node that has a single <asp:ControlParameter>:

<asp:ObjectDataSource ID=”odsDownloads” runat=”server”
SelectMethod=”GetDownloadList” TypeName=”Download”>

<SelectParameters>
<asp:ControlParameter ControlID=”lstCategoryLevel1” Name=”categoryId”

PropertyName=”SelectedValue” Type=”Int32” />
<asp:Parameter Direction=”InputOutput” Name=”recordsAffected” Type=”Int32” />

</SelectParameters>
</asp:ObjectDataSource>

Initially, the ControlID of the ControlParameter is set to lstCategoryLevel1. This means that if you
choose an item from the first drop-down, the page will refresh and you’ll see the downloads that belong
to that category and all of its child categories using the recursive CTE you just saw. However, when you
then select a category from the second drop-down, the downloads list should display records that are
connected to that category instead. The code in the code-behind for the page is responsible for that:

Protected Sub lstCategoryLevel2_SelectedIndexChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles lstCategoryLevel2.SelectedIndexChanged

If Not lstCategoryLevel2.SelectedValue = “” Then
‘ Enable the third drop-down
lstCategoryLevel3.Visible = True
‘ Next, bind the odsDownloads to this drop-down.
Dim myParam As ControlParameter = _

CType(odsDownloads.SelectParameters(0), ControlParameter)
myParam.ControlID = “lstCategoryLevel2”
lstCategoryLevel3.DataBind()

Else
Dim myParam As ControlParameter = _

CType(odsDownloads.SelectParameters(0), ControlParameter)
myParam.ControlID = “lstCategoryLevel1”
lstCategoryLevel3.Visible = False

End If
End Sub

260

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 260

This code fires when you select a different option in the second drop-down. Inside the event handler for
SelectedIndexChanged of that drop-down the SelectedValue is checked. If there is a value (which
means a valid category was chosen), the SelectParameter you saw earlier for the ObjectDataSource
is dynamically changed to the second drop-down:

Dim myParam As ControlParameter = _
CType(odsDownloads.SelectParameters(0), ControlParameter)

myParam.ControlID = “lstCategoryLevel2”

The first line of code gets a reference to the first SelectParameter of the data source control (the second
parameter is an output parameter used to find out how many records were returned from the database).
The SelectParameters collection returns a more generic Parameter object, so CType is used to cast it to
the appropriate ControlParameter type. Once myParam contains a ControlParameter, you can access
its ControlID property and assign it the ID of the second drop-down. This causes the ObjectDataSource
to get the SelectedValue from that drop-down, which is then passed to its SelectMethod, the Get
DownloadList method of the Download class. This in turns causes the DataList to display the down-
loadable files that are related to the chosen category.

This same principle is repeated for the third and first drop-down as well. This way, you can be sure that the
DataList always displays records that are related to the category chosen in the last affected drop-down.

This code example shows that the code you define for controls in the page’s markup is not set in stone. You
can easily modify the controls at run time using code in various events and methods in the code-behind.
This can be very useful if you want to change a page’s behavior at run time.

The final part in the Downloads page you need to look at is the Selected event of the odsDownloads
control. This event fires when the control is done retrieving data from its data source and is an ideal
place to display a message to the user indicating if and how many records were returned from the
database. The GetDownloadList method in the Download class has an output parameter (indicated by
the keyword ByRef) that returns the number of affected records to the calling code. Inside the Selected
event for the data source, this output parameter is retrieved from the OutputParameters collection of
the ObjectDataSourceStatusEventArgs argument passed to the method:

Protected Sub odsDownloads_Selected(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.ObjectDataSourceStatusEventArgs) Handles _

odsDownloads.Selected
Dim recordsAffected As Integer = _

Convert.ToInt32(e.OutputParameters.Item(“recordsAffected”))
‘ The rest of the code is omitted

End Sub

The remainder of the code in the event handler is used to build up a message that is shown on the page
to tell the user how many records were found.

This concludes the discussion of the Downloads page. With this page in place, users can browse the list
of downloads, filtering the number of downloads to those they are most interested in.

Another feature of the site that allows the user to search for content is the Frequently Asked Questions
page, which is discussed next.

261

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 261

Searching Frequently Asked Questions
The page with the frequently asked questions behaves differently from the pages you have seen so far.
Instead of drilling down in the list of FAQs using drop-downs for the categories, the FAQs page allows a
user to search the entire FAQs table with a Boolean query that supports AND and OR logic. So searching
for driver AND failure brings up all frequently asked questions that contain the words driver and
failure, whereas searching for driver OR failure brings up the FAQs that have at least one of those
words in them.

The commercial versions of SQL Server 2005 support a concept called Full Text Indexing. This is a very
smart search technology enabling you to ask much more sophisticated questions than simple Boolean
queries. However, Full Text Indexing is not available in the Express Edition of SQL Server, so you’ll
have to pay for the full version if you want to use this feature. Search the SQL Server books online or
search Microsoft’s MSDN web site (http://msdn.microsoft.com) for the article “SQL Server
2005 Full-Text Search: Internals and Enhancements” for more information about Full Text Indexing.

The markup of the FAQs page is very simple. It contains some introduction text, a text box for the search
term, a button to initiate the search action, and two placeholders that display a message to the user about
the number of results found. It also contains a DataList control that displays the frequently asked
questions and the answers. You might notice the absence of a data source control in the markup of the
page. The page doesn’t have one, and all data binding is done in the code-behind of the page, in the
button’s Click event:

Protected Sub btnSearch_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnSearch.Click

dlFaqs.DataSource = Faq.GetFaqList(txtSearchTerm.Text)
dlFaqs.DataBind()

If dlFaqs.Items.Count > 0 Then
lblSearchedFor2.Text = txtSearchTerm.Text
plcRecords.Visible = True
plcNoRecords.Visible = False

Else
lblSearchedFor1.Text = txtSearchTerm.Text
plcNoRecords.Visible = True
plcRecords.Visible = False

End If
End Sub

This code calls the GetFaqList method of the Faq class. That method, which is examined in a moment,
returns a DataSet that is assigned to the DataList control’s DataSource property. Because no Object
DataSource controls are used that handle data binding automatically, you have to explicitly call
DataBind on the DataList. This causes the DataList to be rendered, displaying the FAQs returned
from the database. After DataBind has been called, you can check out the number of items currently
being displayed by the DataList, by looking at the Count property of its Items collection. When Count
is zero, the page shows the <asp:PlaceHolder> called plcNoRecords that holds a message telling the
user no FAQs were found. To show the user what he searched for, the label lblSearchedFor1 is
updated with the search term.

262

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 262

When the DataList does contain records, the reverse action is performed. The plcNoRecords placeholder
is hidden and plcRecord is shown instead.

As you might expect, GetFaqList of the Faq class simply calls the GetFaqList method in the FaqDB
class to get the frequently asked questions from the database. This method is worth examining closely,
because it is different from other data access code you have seen so far. All the stored procedures you
have seen so far were self-contained. That is, they contained complete SQL statements that are optionally
fed one or more parameters that control the WHERE clause. However, because a user can search the site
with the aforementioned Boolean query syntax, a normal WHERE clause doesn’t work. Instead the code in
the FaqDB class builds up the WHERE clause dynamically, and passes it as a parameter to the stored
procedure. That procedure then uses SQL Server’s EXEC method to execute a dynamic SQL statement
that includes the WHERE clause. To see how this works, the process is explained step by step. First, take a
look at how the final SQL statement should end up. Assume a user searched for driver AND failure
because she wanted to see all the FAQs that contain these terms. The SELECT statement for this search
should end up like this:

SELECT
Id,
QuestionShort,
QuestionLong,
Answer

FROM
Faq

WHERE
(
QuestionShort LIKE ‘%driver%’ OR QuestionLong LIKE ‘%driver%’

OR Answer LIKE ‘%driver%’
)
AND
(
QuestionShort LIKE ‘%failure%’ OR QuestionLong LIKE ‘%failure%’

OR Answer LIKE ‘%failure%’
)

Because of the dynamic nature of the search term, you cannot simply replace %driver% and %failure%
with two parameters to the stored procedure to make the query dynamic. What if the user searched for
driver AND failure AND Power Printer? Instead of two parameters, you now need three. The

Instead of binding the control directly in the code-behind using dlFaqs.DataBind(),
you could also use one of the data source controls, like an ObjectDataSource.
However, using such a control would have meant a lot more work implementing the
required functionality on the page. First of all, you’d need to create an <asp:
Parameter> to feed the search term to the control. You’d also need to find a way to
stop the control from executing its Select operation when the page first loads. Finally,
you’d need to write code in the event handler for its Selected event (which fires after
the control has selected the data from the data source) to determine if any records have
been returned from the data source so you can hide and display the appropriate panels.
Using DataBind directly on the DataList control in the code-behind solves all these
problems in one fell swoop. Chapter 12 shows you how to use an ObjectData
Source control’s Selected event to get useful information about the data returned by
the control after it has finished with its Select method.

263

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 263

answer to this problem is not to make the search terms dynamic, but the entire WHERE clause. This is
done with the BuildWhereClause method that is called in the code for the GetFaqList method:

Private Shared Function BuildWhereClause(ByVal searchTerm As String) As String
Dim simpleSearch As Boolean = True
Dim whereClause As String = String.Empty

searchTerm = searchTerm.Trim()
searchTerm = searchTerm.Replace(“‘“, “‘’”)
searchTerm = searchTerm.Replace(“”””, “”)
searchTerm = searchTerm.Replace(“%”, “”)
searchTerm = searchTerm.Replace(“--”, “”)
searchTerm = searchTerm.Replace(“;”, “”)
searchTerm = searchTerm.Replace(“(“, “”)
searchTerm = searchTerm.Replace(“)”, “”)
searchTerm = searchTerm.Replace(“_”, “”)

Dim testReplace As String = “”
testReplace = searchTerm.ToUpper().Replace(“ AND “, “”)
If testReplace <> searchTerm.ToUpper() Then
simpleSearch = False

End If

testReplace = searchTerm.ToUpper().Replace(“ OR “, “”)
If testReplace <> searchTerm.ToUpper() Then
simpleSearch = False

End If

If simpleSearch = True Then
searchTerm = searchTerm.Replace(“ “, “ AND “)

End If

Dim myAndSplits() As String = Regex.Split(searchTerm, “ and “, _
RegexOptions.IgnoreCase)

For i As Integer = 0 To myAndSplits.Length - 1

Dim myOrSplits() As String = Regex.Split(myAndSplits(i), “ or “, _
RegexOptions.IgnoreCase)

whereClause += “(“
For j As Integer = 0 To myOrSplits.Length - 1
whereClause += “(F.QuestionShort LIKE ‘%” & myOrSplits(j) & “%’ OR _

F.QuestionLong LIKE ‘%” & myOrSplits(j) & “%’ OR F.Answer LIKE ‘%” & _
myOrSplits(j) & “%’)”

If (j + 1) < myOrSplits.Length Then
whereClause += “ OR “

End If
Next

whereClause += “) “

If (i + 1) < myAndSplits.Length Then

whereClause += “ AND “

264

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 264

End If

Next
Return whereClause

End Function

The code starts off with declaring two variables and a number of calls to the Replace method:

Dim simpleSearch As Boolean = True
Dim whereClause As String = String.Empty

searchTerm = searchTerm.Trim()
searchTerm = searchTerm.Replace(“‘“, “‘’”)
searchTerm = searchTerm.Replace(“”””, “”)
searchTerm = searchTerm.Replace(“%”, “”)
searchTerm = searchTerm.Replace(“--”, “”)
searchTerm = searchTerm.Replace(“;”, “”)
searchTerm = searchTerm.Replace(“(“, “”)
searchTerm = searchTerm.Replace(“)”, “”)
searchTerm = searchTerm.Replace(“_”, “”)

The variable simpleSearch is used to determine whether the initial request contained an AND or an OR
statement. The variable whereClause is used to hold the actual WHERE clause this method builds up.
Then the Replace method is used several times to clean the SQL statement from unwanted characters. If
you don’t sanitize the code passed to the database like this, your database is open to SQL injection, a
popular hacker’s technique to gain unauthorized access to your database and system. Normally, the
parameterized stored procedure code takes care of this, but with a dynamic SQL statement you have to
do this yourself. In the current implementation, the cleaning code is embedded directly in the method’s
body, but if you intend to use this technique more often, it’s a good idea to move it to a separate method.
You can see that some important characters that have special meaning in T-SQL have been replaced. For
example, the two dashes (--) are replaced with nothing. These two characters denote the start of a com-
ment but are also used by hackers practicing SQL injection to stop the rest of a SQL statement from being
executed. Also, the single quote (‘) is escaped with a double single quote, and a double quote (“) in the
search term is completely removed because they could be used to inject illegal string delimiters. The per-
centage sign (%) is removed to block users from searching with wild cards.

The next statements use the variable testReplace and the Replace method to find out if the initial
search term contains the keywords AND or OR:

Dim testReplace As String = “”
testReplace = searchTerm.ToUpper().Replace(“ AND “, “”)
If testReplace <> searchTerm.ToUpper() Then
simpleSearch = False

End If

testReplace = searchTerm.ToUpper().Replace(“ OR “, “”)
If testReplace <> searchTerm.ToUpper() Then
simpleSearch = False

End If
If simpleSearch = True Then
searchTerm = searchTerm.Replace(“ “, “ AND “)

End If

265

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 265

If one of these two keywords is present in the search term, it’s assumed the user deliberately used
Boolean logic in her search term. Otherwise, all spaces in the search term are replaced with AND. So,
when the user searched for driver OR failure, the initial search term is not touched. If, however, the
user searched for driver failure the initial statement is changed to driver AND failure.

The next block of code uses the Regex object’s Split method to split the search term on the word AND,
then loops through this array and looks at each individual element:

Dim myAndSplits() As String = Regex.Split(searchTerm, “ and “, _
RegexOptions.IgnoreCase)

For i As Integer = 0 To myAndSplits.Length - 1

The code then tries to split the element on the keyword Or. If this keyword is not present in the element,
the For j loop runs exactly once and adds the element to the WHERE clause surrounded by parentheses.
If the element does contain the keyword Or, the loop adds each individual item to the WHERE clause
separated by the Or keyword:

Dim myOrSplits() As String = Regex.Split(myAndSplits(i), “ or “, _
RegexOptions.IgnoreCase)

whereClause += “(“
For j As Integer = 0 To myOrSplits.Length - 1
whereClause += “(F.QuestionShort LIKE ‘%” & myOrSplits(j) & “%’ OR _

F.QuestionLong LIKE ‘%” & myOrSplits(j) & “%’ OR F.Answer LIKE ‘%” & _
myOrSplits(j) & “%’)”

If (j + 1) < myOrSplits.Length Then
whereClause += “ OR “

End If
Next

whereClause += “) “

If (i + 1) < myAndSplits.Length Then

whereClause += “ AND “
End If

Next
Return whereClause

End Function

At the end of the function, the entire WHERE clause is returned from the function back to the calling code.

To see how the WHERE clause ends up, consider the following search term that a user might enter:
driver AND failure AND Power Printer OR 3D Printer.

This search expression should return all the frequently asked questions with the words driver and failure
and either Power Printer or 3D Printer. With this example, at the end of the BuildWhereClause function,
the variable whereClause holds the following string:

(
(
F.QuestionShort LIKE ‘%driver%’ OR F.QuestionLong LIKE ‘%driver%’

266

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 266

OR F.Answer LIKE ‘%driver%’
)

)
AND
(
(

F.QuestionShort LIKE ‘%failure%’ OR F.QuestionLong LIKE ‘%failure%’
OR F.Answer LIKE ‘%failure%’

)
)
AND
(
(

F.QuestionShort LIKE ‘%Power Printer%’ OR F.QuestionLong LIKE ‘%Power
Printer%’ OR F.Answer LIKE ‘%Power Printer%’

)
OR
(
F.QuestionShort LIKE ‘%3D Printer%’ OR F.QuestionLong LIKE ‘%3D Printer%’

OR F.Answer LIKE ‘%3D Printer%’
)

)

When executed by SQL Server, this WHERE clause returns all the frequently asked questions that match
the user’s search criteria. Because of the way the code is set up, it doesn’t matter if the short question
contains the word driver and the answer contains the word failure, or vice versa. In all cases, this code
finds the records the user is looking for.

The WHERE clause is eventually passed to the database through a SQL parameter called @whereClause,
where it is appended to a SQL statement and executed with the EXEC command:

CREATE PROCEDURE sprocFaqSelectListBySearchTerm

@whereClause nvarchar(1000)

AS

DECLARE @sqlStatement nvarchar(MAX)

SET @sqlStatement = ‘
SELECT
Id,
QuestionShort,
QuestionLong,
Answer

FROM
Faq F

WHERE ‘ + @whereClause
+ ‘
ORDER BY
Id DESC’

EXEC(@sqlStatement)

267

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 267

The EXEC command returns the requested FAQ items, just like a regular SELECT statement would have
done.

This concludes the discussion of the FAQs page and the entire public section of the Customer Support
Site. With the pages in the public ContentFiles folder, users of the Customer Support Site can now easily
locate products, downloads for the products they may have purchased, and browse through the collection
of frequently asked questions.

The final part of the “Code and Code Explanation” section takes a quick look at the pages in the
Management folder that contain the CMS for the Customer Support Site.

The Customer Support Site CMS
Most of the concepts used in the content management system of the support site have been discussed in
previous chapters, most notably Chapter 6. However, a few things are worth discussing, so some of the
highlights of these pages are briefly discussed in the sections that follow.

Categories.aspx
This page allows you to add new categories to the database. Using the now familiar drop-downs you
can drill down in the hierarchy of categories and add a category at each of the three levels. An important
thing to notice about this page is the way the validators are used. The page contains three text boxes that
enable you to type a new category to be added to the database at each of the three available levels. Each
text box also has an <asp:RequiredFieldValidator> control attached to it. Normally, with three
validators, you need to fill all three text boxes before the page will validate. However, at any time, only
one of the text boxes is required. To enable only one validator control at a time, each validator has a
different ValidationGroup attribute. The following code snippet shows the code for the validator that
checks the first text box:

<asp:RequiredFieldValidator ID=”reqLevel1” ValidationGroup=”Level1” runat=”server”
ControlToValidate=”txtLevel1” Display=”Dynamic”
ErrorMessage=”*” />

Controls that cause the validation to be triggered, like buttons, now also have a ValidationGroup
attribute. This way, you can relate postback controls with a specific validation group like this:

<asp:Button ID=”btnAddNewLevel1” runat=”server” Text=”Add New Level 1”
ValidationGroup=”Level1” />

When this button gets clicked, only the controls that share the same ValidationGroup are checked for
valid values.

The List Pages
The pages that list the products, downloads, and FAQs are all very similar. They have a GridView that
displays the items. An Edit and a Delete button allow you to change existing items and delete them. The
RowCommand for each GridView looks at the CommandName of the e argument to determine the action
that must be taken using a Select Case statement. Inside each of the Case blocks, the code converts
the CommandArgument to an Integer and uses that to retrieve the grid’s DataKey. You may be tempted to
move this code to outside the Select Case statement so you only have to write it once. However, when
you do so, you’ll run into trouble when you try to sort the GridView. Although sorting is carried out by

268

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 268

ASP.NET automatically, it still fires the RowCommand when you click one of the column headers to sort
the grid. When you do so, the CommandArgument of the e parameter contains the name of the column
you’re trying to sort on. Obviously, a column name cannot be converted to an Integer, so the code will crash.

The Create and Update Pages
For each of three content types — Downloads, FAQs, and Products — there is an InsertUpdate page that
allows you to create new and change existing items. All three use the FCKeditor that you have seen in
previous chapters. The code for the Download and Product pages uses the GetCategoryPath method
of the Category class. This method returns the path of a category from a child to the parent record. This
method is necessary because the content item in the database only stores the deepest child category. To
be able to preselect the drop-downs of the parent levels, you need to know to which parents a category
belongs. The stored procedure sprocCategorySelectPath once again uses Common Table Expressions
in a similar way you have seen before.

With these pages and their code, you have come to the end of the “Code and Code Explanation” section.
By now you should have learned enough to use and understand the inner workings of the Customer
Support Site. In the next section, you see how to install the application on a web server.

Setting up the Customer Support Site
Just as with the most of the other chapters in this book, you can choose to install the Customer Support Site
manually or by using the supplied installer. The installer ensures a quick and easy installation process,
whereas the manual process gives you a bit more flexibility with regard to where the files are placed.

Using the Installer
To install the Customer Support Site so you can run it on your server, follow these steps:

1. Open the folder Chapter 08 - Customer Support\Installer from the CD-ROM that came with this
book and double-click setup.exe to start up the installer.

2. In the Setup wizard, accept all the defaults by clicking Next until the application has been
installed completely. Click Close to close the installer. The setup procedure has copied all the
required files to a folder called CustomerSupport under your default web site.

3. Next, open up the Web.config file in the CustomerSupport folder (by default, located at
C:\Inetpub\wwwroot\CustomerSupport) and locate the <connectionStrings> node. Check
that the connection string points to your installation of SQL Server and modify the string if
required.

4. Just like you did in Chapter 6, you’ll need to configure the security permissions of the UserFiles
folder, so the web site can save the files that are uploaded through the site and the FCKeditor.
Refer to that chapter for detailed instructions.

5. Now browse to http://localhost/CustomerSupport. The Customer Support Site should
appear and you can browse through the products, downloads, and FAQs lists.

269

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 269

Manual Installation
Although the installer is a very convenient way to set up the Customer Support Site, manual installation
isn’t much more difficult. To install the site manually, follow these steps:

1. Open the folder Chapter 08 - Customer Support\Source from the CD-ROM that came with this
book.

2. Extract the contents of the file Chapter 08 - Customer Support.zip to a location on your hard
drive; for example, C:\Inetpub\wwwroot\. Make sure you extract the files with the option Use
Folder Names or something similar to maintain the original folder structure. The exact setting
depends on the extraction utility you’re using. You should end up with a folder like C:\Inetpub\
wwwroot\CustomerSupport that in turn contains a number of files and other folders.

3. Start Visual Web Developer, choose File➪Open Web Site, and browse to the folder that was cre-
ated in step 2. The site should open and display on the Solution Explorer window.

4. Next, open up the Web.config file from the Solution Explorer and locate the <connection
Strings> node. Check that the connection string points to your installation of SQL Server and
modify the string if required. Save and close the file.

5. Just like you did in Chapter 6, you’ll need to configure the security permissions of the UserFiles
folder, so the web site can save the files that are uploaded through the site and the FCKeditor.
Refer to that chapter for detailed instructions.

6. You can now browse to the site by pressing Ctrl+F5. Visual Web Developer will start its internal
web server and then the site will be displayed in your default web browser.

Using the Customer Support Site
No matter which of the two installation methods you chose, you should now see the Customer Support
Site in your browser. You can use the main menu items like Products and Downloads in the way
described at the start of this chapter. You’ll also see the Management menu item, which allows you to
manage the content in the system.

To make it easier to explain how the Customer Support Site works, and make it easier for you to explore
the Management section, there is no authentication mechanism in place on this web site. This means
anyone accessing this web site has full access to the Management section. Naturally, this isn’t something
you want, so you should take some steps to protect that area of the site. The easiest way to do this is to
configure the application for Membership and Role management by choosing Website➪ASP.NET
Configuration in Visual Web Developer. This opens the Web Site Administration Tool in a browser window.
Create at least one user and a ContentManagers role and assign the new user to this role. If you need
more information about working with the Web Site Administration Tool, click the “How do I use this
tool?” link in the upper-right corner of the window.

The next step is to add the following code to the end of your Web.config file, right after the closing tag of
the <system.web> node:

</system.web>
<location path=”Management”>
<system.web>
<authorization>

270

Chapter 8

11_749516 ch08.qxp 2/10/06 9:17 PM Page 270

<allow roles=”ContentManagers” />
<deny users=”*”/>

</authorization>
</system.web>

</location>

This blocks access to the Management folder to all users except those that are assigned to the
ContentManagers role.

Another solution is to create an entirely new CMS site that connects to the Customer Support database.
This way, you can fully separate the public front end from the protected back-end part of the web site.

If you go to www.wrox.com and find this book’s download page, you’ll discover ways to extend the
Customer Support Site to make it even more useful than it already is. It suggests a couple of extensions
and guides you through implementing one of those features.

Summary
In this chapter you were introduced to the Wrox Hardware Customer Support Site, a web site that
allows users to find and retrieve information about the products that the Wrox Hardware company sells.

You first got a quick tour of browsing through the system from an end-user’s point of view. You saw
how to locate Products and Downloads, and how to search the list of Frequently Asked Questions.

Then you got an overview of the system’s design. You saw that the application is separated in three
different layers: one for the presentation, one for the business logic, and one for the data access code. You
saw a list of all the classes involved and the methods they support. You also got an explanation of these
methods and how the interact together.

In the “Code and Code Explanation” section you got a detailed look at the code inside all these classes
and pages. You learned how to deploy ObjectDataSource controls to enforce good n-tier architecture
in your application. Using these controls enables you to create well-designed and easy-to-maintain
applications without cluttering up your pages with tons of SQL statements or stored procedure names.
You also saw how to use the new Common Table Expressions feature in SQL Server, a powerful technique
to create recursive code that enables you to retrieve complex, hierarchical data structures from the
database.

At the end of the chapter you learned how to install the Customer Support Site with either the supplied
installer or by a manual installation process, and got a few tips about securing the Management folder
from unauthorized users.

271

Customer Support Site

11_749516 ch08.qxp 2/10/06 9:17 PM Page 271

11_749516 ch08.qxp 2/10/06 9:17 PM Page 272

9
Wrox WebShop

E-commerce is one of the largest driving forces behind the Internet. Even in the Internet’s earliest
days, many sites featured a shop where you could order products and have them shipped to your
home. With the advent of server-side techniques, such as ASP and ASP.NET, it has been much easier
and cheaper for smaller sites to offer their products and services online. Despite the large diversity
in the goods these sites offer, they all have one thing in common. To allow customers to select the
products they want to order, they all feature a product catalog and a shopping cart where products
are stored during the shopping process. At checkout time, these products are taken from the cart
and usually stored in a database so the order can be processed later. The Wrox WebShop is no
exception; this chapter shows you how to create a web shop with a shopping cart in ASP.NET 2.0.

The chapter starts off with a quick tour of the WebShop from an end-user’s point of view. It guides
you through the process of browsing articles and adding them to a shopping cart, and shows you
how the shopping cart is saved in the database as an order. Finally, this chapter also explains how
you can manage the product catalog for the WebShop.

Once you have a basic understanding of the functionality in the WebShop you dig into its design,
discovering the business and data access layer classes that make up the application.

The section “Code and Code Explanation” puts it all together and explains how the ASPX pages
interact with the classes in the business layer.

If you want to set up the WebShop so you can follow along with the explanation, refer to the section
“Setting up the WebShop” near the end of this chapter.

Using the WebShop
The user interface of the WebShop consists of two main parts: the public area and the protected
Management section. The public site is where your visitors can view and order products, and
the Management section allows you to manage the products in the catalog. The Management section
is protected so only users in the Administrator group can access it.

12_749516 ch09.qxp 2/10/06 9:18 PM Page 273

The next section discusses the public interface of the WebShop, and demonstrates how you can browse
the product catalog and order products. The section that follows briefly guides you through the
Management section.

Navigating the WebShop
Because it’s more interesting to focus on the functionality of the WebShop, rather than on its look and
feel, the design of the shop is pretty simple and straightforward. If you open the homepage of the WebShop
by browsing to http://localhost/WebShop (or another location you may have chosen during setup),
you’ll see the WebShop’s homepage appear, as shown in Figure 9-1.

Figure 9-1

Besides the logo and the welcome text, you also see the main menu that appears on each page in the site.
This main menu contains a few important navigation buttons. The Home button always brings you back
to the homepage of the WebShop. The Shop button brings you to the main shopping area where you can
browse the product catalog. With the Shopping Cart menu item you can view the contents of your shopping
cart, if there is anything to show. The Login button allows you to log in manually. Usually, there is no
need to use this button, because the WebShop shows the Login page automatically whenever you try to
access a protected page. Once you’re logged in, this button changes to Logout, allowing you sign out again.

If you click the Shop button you’re taken to the Shop area (see Figure 9-2) where you can browse
through the product catalog.

On the left you see the available product categories (Mugs, Posters, and T-Shirts), presented as a list of
hyperlinks. When you click one of these links, the list of products on the right is updated and displays
the products for that category. The categories and the products are all retrieved from the database — you
see how that works in the “Code and Code Explanation” section later in this chapter.

To view the details of a product, you can click its image, heading, the little triangle, or the Read More
link. The Product Details page appears where you can add the requested article to your shopping cart or
return to the main shopping area. If you decide to purchase the item by clicking the Add to Cart button,
you’re taken to the Shopping Cart page, which is depicted in Figure 9-3.

274

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 274

Figure 9-2

Figure 9-3

275

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 275

If you want to add more products to your cart, click the Continue Shopping button. Otherwise, make
your move to the counter by clicking Proceed to Check Out. Because the checkout page is only accessible
by authenticated users, you’re taken to Login.aspx first if you’re not logged in. If you’re a new customer,
you should sign up to get a new WebShop Customer account. If you made a purchase in the past, simply
add your username and password to log in.

The Login page also allows you to retrieve a lost password that is sent to you by e-mail.

Once you successfully create an account and log in, you have to supply your name and shipping address,
and then confirm your order. After reviewing the items in your shopping cart, click the Finalize Order
button. This saves the order in the database and then redirects you to the Thank You page, where you
get instructions about how to make the payment for the order. Further on in the chapter, when the code
is discussed, you see a full flowchart of this process in Figure 9-13.

The Wrox WebShop does not have a connection with a payment provider to handle online payments.
The diversity in payment providers makes it very hard to demonstrate a “one size fits all” solution here.
Usually when you sign a contract with a payment provider, you get detailed documentation and sample
code showing you how to access their services. The best place to integrate a payment provider in the
WebShop is on the Check Out page. In the current WebShop, that page is responsible for finalizing the
order. When connected to a payment service, you still save the order in the database, but mark it as “in
progress.” Then you redirect the user to the payment provider’s web site to complete the purchase. You
usually need to pass the order ID and the total order amount, and optionally the user’s details. Once the
user has either paid for or cancelled the order, the payment provider updates you on the result of the
transaction. When the transaction has succeeded, you can update the order in the database and set it to
Paid. Otherwise, you can cancel the order or remove it from your database altogether.

Maintaining the WebShop Product Catalog
The WebShop has a small maintenance section that allows you to create new products and delete existing
ones. If you’re logged in as an Administrator (you can use a username of Administrator and a password
of Admin123#), you can click the Admin menu item to enter the maintenance section. In this section you
can choose Add New Product to insert a new product (see Figure 9-4).

You need to provide a title, a description, a category, and a price for the product you want to add. To display
the product on the product pages and in the shopping cart, you also need to provide an image for the
product. From this image, three thumbnails are created automatically. You see how this works later in
the chapter.

From the Product List page you can also delete products from the catalog. It’s not possible to update
existing products or to maintain categories. However, with the knowledge you gained in previous chapters,
this will be easy to implement.

Now that you know how to use the WebShop as an end-user, it’s time to look at its design.

276

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 276

Figure 9-4

Design of the WebShop
To make the WebShop easy to maintain, it’s based on a three-tier architecture where the ASPX pages are
separated from the business layer and data access code. The code for the business layer is located in the
BusinessLogic folder in the special App_Code folder, and the data access layer can be found in the
DataAccess folder. The presentation layer, consisting of .aspx and .ascx files, is located in the root of the
site and in a few subfolders that are listed later.

The Business Layer
The business layer consists of five classes that are stored in the BusinessLogic folder inside the App_Code
folder in the root of the web site.

Because each file in the business layer contains only one class, the file is named after the class. So you’ll
find the Product class in the file Product.vb, and so on.

Product
The Product class (see Figure 9-5) represents the products that are displayed on the web site; it does not
represent the actual ordered product customers can add to their shopping cart, although the two are
closely related.

277

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 277

Figure 9-5

The Product class itself has no defined behavior. That is, it has only properties and no methods other
than a default constructor. All interaction with products, such as getting a list of products or a product
instance, is carried out by the ShopManager class, which is discussed later. In addition to Id, Price, and
Description properties, the Product class also has multiple PictureURL properties that are used to dis-
play images of the product in the product catalog, the detail page, and the shopping cart. The following
table lists each of the eight properties of the Product class and explains their usage:

Property Type Description

CategoryId Integer The database of the WebShop has a Category table to
identify the various product categories. Each product is
then linked to that table through its CategoryId.

Description String This is the full description of the product, allowing you to
provide detailed information about it.

Id Integer This is the unique ID of the product in the database. The
ID is assigned by the database automatically whenever a
new product is inserted.

PictureUrlLarge String This property contains a virtual path to the large image of
the product. This image is used on the detail page for
each product.

PictureUrlMedium String This property contains a virtual path to a medium-sized
thumbnail image of the product. This image is used on
the product catalog with a list of products.

PictureUrlSmall String This property contains a virtual path to a small thumbnail
image of the product. This small image is used in the
shopping cart.

Price Decimal The price of the product.

Title String This is the title of the product used to identify the prod-
uct in the catalog and in the shopping cart.

278

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 278

You should note that a product does not have properties like Quantity to indicate the number of items
a user wants to order of a specific product. Whenever a user adds a product to the shopping cart, that
product is wrapped inside an instance of the OrderedProduct class that does have these properties.
The OrderedProduct class is discussed next.

OrderedProduct
In Figure 9-6, a diagram of the OrderedProduct class, you see a lot of properties that the Product class
has as well. That’s no surprise, because an OrderedProduct has a lot in common with a Product. To
avoid duplication of functionality and copying information from a Product to an OrderedProduct
whenever an item is added to the shopping cart, the OrderedProduct class has a private member of
type Product. When a new instance of an OrderedProduct is created, an instance of the Product class
is passed to its constructor, which is then stored in _theProduct. Properties such as Description and
PictureUrlSmall then forward their calls to the inner Product to get at the actual values.

Figure 9-6

Besides the properties that delegate their responsibility to the inner Product object, the
OrderedProduct class has the following additional properties:

Property Type Description

Id Guid A unique ID to identify each product in the shopping cart.
This ID is generated whenever a new instance of Ordered
Product is created, and is used when existing items are
updated or removed from the cart.

ProductId Integer The ID of the underlying product.

Quantity Integer The number of items of the product that a user has ordered.

SubTotal Decimal Returns the read-only subtotal for the OrderedProduct
items by multiplying their quantity and the price of the
inner Product. This property is used in the shopping cart
to display the subtotal for each item.

279

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 279

So far you have looked at classes that contain information, but cannot perform any actions. To do some-
thing useful with these classes you need some action classes that can operate on Products and
OrderedProducts. Those classes are the ShoppingCart and the ShopManager, which are discussed
next. Just as the Product and OrderedProduct classes, you’ll find these two classes in the
BusinessLogic folder in the App_Code folder.

ShoppingCart
The ShoppingCart class (see Figure 9-7) is, as its name implies, the central storage location for
OrderedProducts. An instance of the ShoppingCart class is stored in a simple session variable and
made accessible through a shared property on the ShopManager class. This way, all the pages and other
classes in the site can access the cart.

Figure 9-7

The ShoppingCart class contains a list with ordered products and a few methods to add, update, and
remove those items. It also has properties to access the items in the shopping cart, get an item count, and
get a total order amount for all the ordered products. Finally, it has a default, parameterless constructor
to create new instances of type ShoppingCart.

The following table lists the properties of the ShoppingCart class:

Property Type Description

Count Integer Returns the total number of ordered items. It does
this by looping through the _items collection,
asking each OrderedProduct for its Quantity.
This property is read-only.

Items List (Of OrderedProduct) Provides read-only access to the _items list. To
add, update, or insert items in the list, the public
methods of the ShoppingCart class must be used.
This property is read-only.

Total Decimal Returns the total amount of money for the entire
order. It does this by looping through the _items
collection, asking each OrderedProduct for its
SubTotal. This property is read-only.

280

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 280

To work with the items in the shopping cart the class exposes the following methods:

Method Name Return Description
Type

Public Sub Add n/a Adds a new OrderedProduct to the shopping
(ByVal theProduct cart. When the item is already present, its quantity
As Product) is increased instead of adding a new instance to the

cart. The product passed to this method is wrapped
inside an OrderedProduct instance that in turn is
added to the cart.

Public Sub Clear () n/a Removes all items from the cart.

Public Sub Remove n/a Removes an item from the cart based on its unique ID.
(ByVal id As Guid)

Public Sub Update n/a Updates the quantity for an existing item in the cart
(ByVal newQuantity based on its unique ID.
As Integer, ByVal id
As Guid)

These four methods are never accessed by the ASPX pages in the presentation layer directly. The presentation
layer should call one of the public methods on the ShopManager class that in turn call these methods on
the ShoppingCart class.

ShopManager
The ShopManager class (see Figure 9-8) is the central entity in the application that deals with Products
and OrderedProducts. It is used in two parts of the application: in the front end to provide access to
the shopping cart and in the back end to allow an administrator to manage the products in the product
catalog.

Figure 9-8

281

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 281

In addition to the ShoppingCart property, which is of type ShoppingCart, discussed earlier, the
ShopManager has the following public methods:

Method Name Return Description
Type

Public Shared Sub n/a Adds a new OrderedProduct to the shopping
AddProductToCart cart by calling the Add method of the Shopping
(ByVal theProduct Cart class.
As Product)

Public Shared Sub n/a Deletes a product from the product catalog. This
DeleteProduct method is used in the maintenance section of the
(ByVal theProduct WebShop.
As Product)

Public Shared Integer Finalizes an order for a customer. This method
Function FinalizeOrder calls the FinalizeOrder method in the data
(ByVal theCustomer access layer to insert the order in the database
As Customer) and then returns the new order ID.

Public Shared Product Returns a single instance of a product. This
Function GetProduct method is used in the Product Details page to
(ByVal theProductId display information about a specific product.
As Integer)

Public Shared DataSet Returns a DataSet with the available product
Function GetProduct categories used in the catalog and the maintenance
Categories() section.

Public Shared List Returns a list with products in the specified
Function GetProductList (Of Product) category. Used to display products in the product
(ByVal theCategoryId catalog.
As Integer)

Public Shared Function List Returns a list with OrderedProducts from the
GetShoppingCartItems () (Of Ordered ShoppingCart by accessing its Items property.

Product)

Public Shared Sub n/a Inserts a new product in the product catalog. This
InsertProduct (ByVal method is used in the maintenance section of the
theProduct As Product) WebShop.

Public Shared Sub n/a Removes an OrderedProduct from the shopping
RemoveProductFromCart cart by calling the Remove method of the Shopping
(ByVal id As Guid) Cart class.

Public Shared Sub n/a Updates an existing OrderedProduct in the
UpdateProductInCart shopping cart by calling the Update method of
(ByVal newQuantity the ShoppingCart class.
As Integer, ByVal id
As Guid)

282

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 282

Besides these methods, the ShopManager class has a single, hidden constructor. By hiding the constructor
(using the access modifier Private) you can prevent calling code from creating useless instances of the
ShopManager class. Because the class exposes only shared methods and properties, there is never the
need for an instance of the ShopManager.

Obviously, a shop needs customers to stay in business and the Wrox WebShop is no exception. The next
section shows you what the Customer class in the WebShop looks like.

Customer
The final class in the business layer you should look at is the Customer class. The WebShop uses the
Membership provider and the Profile classes to store information about the user such as login name,
password, and address details. Because all of this is handled by ASP.NET automatically, why do you
need an additional Customer class?

The Customer class is used to reflect the user’s details at the moment of a purchase in the WebShop. From
a security standpoint it’s a good practice to disallow users to change their details, such as the shipping
address, after the purchase has been finalized. This way, for example, hackers cannot change the shipping
address after the order has been paid and redirect the goods to their address instead of to the customer’s.

Right before the order is finalized in the Check Out page the Customer class is filled with the user’s details,
which are retrieved from the Membership and Profile providers and then passed to the FinalizeOrder
method in the ShopManager class. The details from the Customer class are inserted into the database
together with the other order details. So, even if a customer changes the shipping address manually, the
goods will still be delivered to the address that was supplied during the ordering process. If you want to
allow customers to change their order details for an order that has already been finalized, you need to
implement this functionality. To make this secure, you could allow them to temporarily update their
details, but postpone applying the changes to the order until they have confirmed an e-mail, for example.
This way, you can be sure that the original user has requested and approved the change.

The Customer class has only seven public properties and only one method, its constructor, as shown in
Figure 9-9.

Figure 9-9

283

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 283

Most of the properties are pretty straightforward and don’t need an additional explanation. The only
exception is the CustomerId property. This ID, implemented as a Guid, is not generated by the
Customer class itself, but is retrieved from the ProviderUserKey property of the MembershipUser
class. This is the unique ID for each user in the application, automatically generated and stored by the
ASP.NET Framework. Because the data stored by the Membership and Profile providers is in the same
database used by the rest of the WebShop application, it makes sense to reuse this unique key so it’s easy
to retrieve related user details later based on this key.

All properties of the Customer class are read-only — to set their initial values, you need to pass them to
the constructor of the class.

Out of the five classes in the business layer, only the ShopManager has methods that require data access
to read from and write to the database. This data access is performed by the ShopManagerDB class,
which is discussed in the next section.

The Data Access Layer
Two key elements make up the data access layer. First there is the database and its tables that store the
data for the shop. The second part contains the methods in the ShopManagerDB class that uses stored
procedures to get data in and out of the database. Because a fundamental knowledge of the database is
important to understand how the data access methods work, the data model is discussed first, followed
by the ShopManagerDB class.

The Data Model
For many of the operations that take place in the WebShop, a back-end database is used. This database,
called WebShop.mdf and stored in the App_Data folder of the web site, stores data about products,
orders, and categories. To understand how it all fits together, you should take a look at Figure 9-10,
which shows the data model for the WebShop. It’s quite a simple model, with only four tables.

Figure 9-10

Figure 9-10 shows only the custom tables added for the WebShop; it does not list the tables that have been
added by the Membership and Role providers. During run time, those tables are used by the ASP.NET
Framework to authenticate users and determine their roles. They are not used for storing information
about products, categories, or orders, other than the CustomerId in the OrderBase table that is used to
determine what WebShop user placed the order. The following tables list each database table and their
respective columns:

284

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 284

Product

Column Name Data Type Description

Id int The Unique ID of each product. This ID is generated
automatically by the database each time a new product
is inserted.

Title nvarchar(100) The title of the product. The title is displayed on the
product list and details pages of the product catalog.

Description nvarchar(max) A longer description of the product. Although the
nvarchar(max) data type, new in SQL Server 2005,
allows you to store up to almost 2GB of information,
the description is usually limited to a few K of text,
describing the full product specs.

Price money The price of the product.

CategoryId int Each product is placed in a category that is displayed
on the web site to allow for easy navigation of the
product catalog. The names of the categories are stored
in the Category table and the Product table stores only
the primary key of that table as a foreign key.

PictureUrlSmall nvarchar(255) A small picture showing the product. This image is
shown in the shopping cart.

PictureUrlMedium nvarchar(255) A medium-sized picture showing the product. This
image is shown on the product list page.

PictureUrlLarge nvarchar(255) A larger picture showing the product. This image is
shown on the product details page.

Deleted bit Indicates whether a product is still available on the
web site. Because the product details are needed to
display information about ordered products, a product
can never be physically deleted from the database,
Instead, it’s marked as “deleted.”

Each product is linked to a category that is stored in the Category table:

Category

Column Name Data Type Description

Id int The unique ID of each category. This ID is generated
automatically by the database each time a new category
is inserted.

Description nvarchar(100) The description of the category. The description of the
category is used mainly in the navigation menu in the
main shopping area to allow a user to select a category.

285

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 285

Once a customer has placed an order, the order data is stored in two tables — OrderBase and OrderDetails.
The OrderBase table contains information that applies to the entire order, such as the order date and the
customer that placed the order.

OrderBase

Column Name Data Type Description

Id int The unique ID of each order. This ID is generated
automatically by the database each time a new order
is inserted. The order ID is also communicated back
to the customer as the order number.

OrderDate datetime The date and time the order was placed.

CustomerId uniqueidentifier The ID of the customer that placed the order. This is
the primary key of the aspnet_Users table that has
been added to the database to support the Role and
Membership providers.

FirstName nvarchar(50) The first name of the customer.

LastName nvarchar(50) The last name of the customer.

Street nvarchar(100) The customer’s shipping address.

ZipCode nvarchar(20) The zip code of the customer’s address.

City nvarchar(100) The city of the customer’s address.

Country nvarchar(50) The country of the customer’s address.

The OrderDetail table stores information about each product a customer has ordered. This table is linked
back to the OrderBase table with its OrderBaseId column.

OrderDetail

Column Name Data Type Description

Id int The unique ID of each order detail record. This ID is
generated automatically by the database each time a
new order detail is inserted.

OrderBaseId int The ID of the order to which this order detail belongs.

ProductId int The ID of the ordered product. This ID is used to link
back to the product table to get information such as
the title and the description.

Price money Because a product’s price may change after it has been
ordered, the price is stored with the order details. This
ensures that the total price for an order doesn’t change
after it has been confirmed by a customer.

Quantity int The number of items of the product the customer has
ordered.

286

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 286

The data in the database is not accessed by the code in the data access layer directly using inline SQL
statements. Instead, for each relevant database action (insert, update, and so on), the database has a stored
procedure that carries out the requested action. This makes it easier to reuse the SQL code in other parts
of the application. It also makes it easier to make radical changes to the structure of the database; instead
of examining many methods in the data access layer, all you need to do is change the stored procedures.
The stored procedures for the WebShop are all pretty straightforward. Most of them do nothing but
insert a single record, or retrieve one or more items.

ShopManagerDB
Because of the limited size of the WebShop application, all data access code is centralized in a single class,
the ShopManagerDB. In larger applications it’s a good idea to give most of the business classes their own
counterpart in the business layer. That way it’s easy to see how classes in both layers are related. For the
WebShop that would likely result in numerous very small classes like the ProductManagerDB, Category
ManagerDB, CustomerManagerDB, and so on, each with only one or two methods. To keep things simple
and straightforward, the WebShop uses the ShopManager class in the business layer and the Shop
ManagerDB class (Figure 9-11 shows its structure) in the data access layer. Just like a shop manager in the
real world, these classes are responsible for showing the customers around (displaying products from
the product catalog), stocking the shelves (maintaining the product catalog in the maintenance section),
and completing the customer’s order.

Figure 9-11

The ShopManagerDB class has only shared methods and no properties. Therefore, its constructor has
been hidden by marking it as Private. This is indicated by the little lock icon you can see in Figure 9-11.
The other methods in this class can be divided in two groups: methods that are used at the front end of
the site to order products, and those that are used in the maintenance area to manage the products in the
product catalog. The following table lists the six important methods of the ShopManagerDB class:

Method Name Return Description
Type

Public Shared n/a Marks a product as deleted by setting the Deleted
Sub DeleteProduct column to 1 (true).
(ByVal theProduct
As Product)

Table continued on following page

287

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 287

Method Name Return Description
Type

Public Shared Integer Inserts an order in the OrderBase table and adds an
Function FinalizeOrder associated record for each ordered product in the
(ByVal theShoppingCart OrderDetail table. It returns the new orderId.
As ShoppingCart, ByVal
theCustomer As Customer)

Public Shared Product Returns a single instance of a Product, indicated by
Function GetProduct the productId parameter. Returns Nothing when
(ByVal productId the product couldn’t be found.
As Integer)

Public Shared Function DataSet Returns a list with the available Categories as a
GetProductCategories () DataSet with an ID and a Description column.

Public Shared Function List Returns a strongly typed list of products. The
GetProducts (ByVal (Of Product) categoryId parameter is used to limit the product
categoryId As Integer) list to products in one category.

Public Shared Sub n/a Creates a new product in the Product table.
InsertProduct (ByVal
theProduct As Product)

Helper Classes
The App_Code folder for the WebShop also contains two utility classes called Helpers and App
Configuration. The Helpers class has one method called ResizeImage. This method takes a path to
an image and a maximum and then resizes the image. The inner workings of this method are discussed
in Chapter 11, which deals with manipulating images.

The AppConfiguration class has a single read-only and shared property called ConnectionString
that reads the WebShop’s connection string from the Web.config file and returns it to the calling code.
This makes it very easy to change the connection string later; for example, when you switch from the
development to the production environment. All you need to do is change the connection string in the
Web.config file and the changes will be picked up by the ASP.NET run time automatically.

Another benefit of using a shared property like this is that you get IntelliSense on the Helpers class to help
you remember the name of the connection. With this property, you don’t have to remember the actual name
of the key of the connection string or the code required to get the string from the Web.config file.

Now that you understand the design of the business and data access layers, it’s time to turn your attention
to the actual implementation. The following section explains most of the pages in the WebShop application
and how they interact with the code in the business layer.

288

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 288

Code and Code Explanation
The files in the WebShop are logically grouped together in folders. The Css folder contains a single file
called Core.css that contains the CSS used throughout the site. The Images folder contains the few images
that are used throughout the site, such as the logo. Its subfolder Products contains the automatically
generated thumbnails, three for each of the products.

In addition to these two folders the site contains three other important folders: Controls, Shop, and
Management. The Controls folder contains three user controls that are used in various other pages in the
site. The controls are explained as part of the pages that contain them in the next few sections. The Shop
folder contains all the pages that make up the shopping section of the site, such as the Product Detail
page and the Check Out page. These files are examined in great detail later. The Management folder
contains the files that are required to maintain the products in the product catalog.

Root Files
A few files located in the root are also used by many other pages in the site, so it’s important to look at
them first.

Global.asax
The Global.asax for the WebShop contains code for one event only: Application_Error. In this event
handler, which fires whenever an error occurs in the site, an e-mail is sent with the error details. Refer to
Chapter 6 for an explanation of this code.

Web.config
As is common in any ASP.NET application, the WebShop has a Web.config file that contains settings that
are critical to the application. This section shows you the most important keys only; many of the other
settings in the file are placed there by default whenever you create a new web application in Visual Web
Developer.

Under the <appSettings> node you find a single key/value pair called MailFromAddress. This key is
used to set the From: address in e-mails that are sent by the application. This setting is used in the
PasswordRecovery control in the Login page:

<appSettings>
<add key=”MailFromAddress” value=”You@YourProvider.Com”/>

</appSettings>

Below the <appSettings> you find the connectionStrings node that has a single connection string
defined called WebShop. The connection string uses the local SQL Express Edition of SQL Server and
instructs it to automatically attach the WebShop.mdf file in the App_Data folder:

<connectionStrings>
<add name=”WebShop” connectionString=”server=(local)\SqlExpress;

AttachDbFileName=|DataDirectory|WebShop.mdf;Integrated Security=true;
User Instance=true”/>

</connectionStrings>

289

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 289

The <profile> node sets up the Profile provider. Profiles are a great way to quickly save user-specific
information such as name, addresses, and preferences. Storing and retrieving the information is trans-
parently done by the ASP.NET Framework — no custom code is required. All you need to do is set up
the <profile> node in the Web.config file. The <profile> element has a few sub-elements that require
some explanation. Following is the entire <profile> element:

<profile>
<providers>
<clear />
<add name=”AspNetSqlProfileProvider”

connectionStringName=”WebShop”
applicationName=”/”
type=”System.Web.Profile.SqlProfileProvider, System.Web,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”

/>
</providers>
<properties>
<add name=”FirstName” />
<add name=”LastName” />
<add name=”ProfileCompleted” type=”System.Boolean” />
<group name=”Address”>
<add name=”Street” />
<add name=”ZipCode” />
<add name=”City” />
<add name=”Country” />

</group>
</properties>

</profile>

The <providers> element tells the ASP.NET run time what Profile provider to use. In the
Machine.config file, the root of all configuration files on your server, there is already a default provider
configured that uses a local connection string and a database called aspnetdb.mdf. Because the WebShop
uses its own database, the <clear /> element is used to remove the inherited profile settings. The
<add> element then adds a new provider that is very similar to the original one, except that the
connectionStringName property now points to the WebShop database.

The <properties> node is where you add the actual <profile> properties you want to use. Properties
come in two flavors: simple properties and grouped properties. An example of a simple property is the
FirstName. Because no additional information is supplied, the type of the FirstName property defaults
to a System.String, which is fine for a first name. The property ProfileCompleted is set to a Boolean
by specifying type=”System.Boolean” in the <add> element.

The Street, ZipCode, City, and Country properties are part of a properties group called Address. All
these properties are of type String, because of the missing type attribute. Grouping properties is a very
convenient way to provide a clean programming model to the developers using this profile. Figure 9-12
shows you how you can retrieve the ZipCode property from the Address group.

As you can see, the ZipCode property is now a property of the Address group, which in turn is a property
of the Profile class. Behind the scenes, the information in the <properties> node is compiled into a
class that is made available through the Profile class. This happens both at development time, so you get
IntelliSense support, and at compile time, so the information is available at run time.

290

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 290

Figure 9-12

The <profiles> element has a few other settings that allow you to tweak the behavior of the profile
feature. For example, the allowAnonymous attribute of a property controls whether the setting can be
used by anonymous users, whereas the automaticSaveEnabled attribute of the <profile> element
determines whether changes in the profile are saved automatically, or if you need to explicitly call the
Save method. If you want to find out more about the Profiles feature of ASP.NET 2.0, pick up a copy of
Wrox’s Professional ASP.NET 2.0.

Next up in the Web.config are the settings for the Membership and Role providers. It’s quite a bit of code
and very similar to the code you have seen in previous chapters, so it’s not repeated here but you’re
encouraged to take a look at it in the Web.config file. The most important elements are the <membership>
and <roleManager>. They control the way users are authenticated in the site and to what roles they are
assigned. The <roleManager> is used for only one role, the Administrator that needs to access the
maintenance section.

At the bottom of the Web.config file you find two <location> nodes that override the authentication
for the Management folder and the CheckOut.aspx page. Only users in the Administrator role can access
the Management folder, whereas the Check Out page is blocked for all non-authenticated users.

MasterPage.master
The master page of the WebShop defines the general look and feel of all the pages in the site, as you saw
in the introduction of this chapter. The master page contains a reference to the global CSS file called
Core.css in the Css folder. It also includes a user control called MainMenu that you find in the Controls
folder. This MainMenu control in turn contains a number of <a> tags that link to entry point pages of
each main section. Some of the links are hidden from unauthenticated users by using a LoginView control.
The display of the Login or Logout button and the Admin button is controlled as follows:

<asp:LoginView runat=”server” ID=”lv1”>
<AnonymousTemplate>
Login

</AnonymousTemplate>
<LoggedInTemplate>
<asp:LinkButton ID=”lnkLogout” runat=”server”

291

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 291

OnClick=”lnkLogout_Click”>Logout</asp:LinkButton>
</LoggedInTemplate>
<RoleGroups>
<asp:RoleGroup Roles=”Administrator”>
<ContentTemplate>
<asp:LinkButton ID=”lnkLogout” runat=”server”

OnClick=”lnkLogout_Click”>Logout</asp:LinkButton>
|
Admin

</ContentTemplate>
</asp:RoleGroup>

</RoleGroups>
</asp:LoginView>

All anonymous users get to see the Login button defined in the <AnonymousTemplate> element.
Authenticated users see the Logout button instead. Users that are in the Administrator role see the
Logout button and the Admin button. The Logout link is repeated because the <RoleGroups> element
takes precedence over the <LoggedInTemplate>. That is, you can’t show content to a user from both the
<LoggedInTemplate> and a <ContentTemplate> of a <RoleGroup> at the same time.

In addition to the LoginView control, you can also use a LoginStatus control for the Login and Logout
links. This control displays either a Login or a Logout link, depending in the current status.

The final important piece of the master page is the ContentPlaceHolder. This defines the region that
pages implementing the master page can override with their own custom content.

Default.aspx
Default.aspx is the homepage for the WebShop and contains only introduction text and a link to the product
catalog.

Login.aspx
The Login.aspx page deals with anything related to a user logging in to the system. It contains three of
the new ASP.NET 2.0 login controls, each placed in its own HTML <fieldset> control to provide some
visual separation. The following table lists each of the controls and their usage:

Control Type Description

CreateUserWizard This control allows a user to sign up for an account at the WebShop.
The control is used “out of the box” without any impacting
changes.

Login Allows an existing user to log in to the WebShop. Just as the Create
UserWizard control, there isn’t much configured on this control
except for some textual changes.

PasswordRecovery Allows a user to get a new password by answering the secret
question.

292

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 292

The PasswordRecovery control needs a bit more explanation. By default, the control retrieves a user’s
password based on his or her username. However, many users won’t remember their username. They
do, however, remember their e-mail address. That’s why a little trick is deployed to get the user’s name
based on his or her e-mail address automatically. First the UserNameInstructionText and UserName
LabelText attributes of the control are changed to instruct the user to type an e-mail address instead of
a username. Then in the VerifyingUser method of the PasswordRecovery control the user’s name is
retrieved with the following code:

Protected Sub PasswordRecovery1_VerifyingUser(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.LoginCancelEventArgs) _
Handles PasswordRecovery1.VerifyingUser

PasswordRecovery1.UserName = _
Membership.GetUserNameByEmail(PasswordRecovery1.UserName)

End Sub

This way, the user can supply an e-mail address, while under the hood the user’s name is used to assign
the new password.

UserDetails.aspx
The user details page allows a user to supply information such as a name and shipping address. The
page contains six text boxes, one for each of the properties from the profile. At load time, the controls are
filled with the user’s details from the profile if the information is available. When the Save button is
clicked, the values from the controls are saved in the profile. The page uses validation controls to make
sure each field is filled in.

The Shop Folder
The Shop folder contains all files required for the front end of the shop, like the product catalog, the
shopping cart, and the checkout page. Before each page in the front end is discussed, take a look at
Figure 9-13, which shows a typical work flow a user follows while making purchases in the WebShop.

You enter the homepage of the site (1) and then proceed to the product catalog (2). When you see a prod-
uct you want to purchase you can add it to the shopping cart (3). From there you can browse back to the
product catalog and add more items. Once you’re ready to make the purchase, you move on to the
checkout page (4). To finalize the order, you need to log in (5). If you don’t have an account yet, you
should sign up for one first (6). After you log in, the system asks you for additional details like name and
shipping address (7). Once all details have been filled in and validated, the order is finalized (8) and you
get a confirmation message, showing the order details and order number (9).

The next section of this chapter digs deeper into each of the pages involved in this process.

293

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 293

Figure 9-13

Displaying Products
When you click the Shop menu item on the homepage you’re taken to Default.aspx in the shop folder
(number 2 in Figure 9-13). This page is split into two parts using an HTML table. The left column contains
an ASP.NET Repeater control that displays the available product categories. The categories are added
to the Repeater through an ObjectDataSource control that gets the items as a DataSet from the
GetProductCategories method in the ShopManager class. When you click one of the categories, the
product list on the right is reloaded to show only the products that belong to that category.

The products are displayed using a DataList with its RepeatColumns set to 2, so it displays two
products next to each other. Right below the DataList are two HyperLink controls to move forward
and backward in the list. The .aspx portion of this page doesn’t feature much news so it isn’t discussed
any further. What’s more interesting to look at is the code-behind for the file.

Because the DataList doesn’t support paging out of the box, the page uses a custom paging solution
with a PagedDataSource. The PagedDataSource control is the underlying mechanism for controls
that support paging natively like the GridView and the DetailsView. In the LoadData method of the
code-behind file a new PagedDataSource control is created, and then its DataSource is filled with the
results of ShopManager.GetProductList. In addition to the data source you can set properties like
AllowPaging, PageSize, and CurrentPageIndex the same way as you would for a GridView. The
CurrentPageIndex is calculated by looking at a query string variable called Page. In the end, the
PagedDataSource control is assigned to the GridView, which is then responsible for displaying the
data held in the PagedDataSource.

Enter Site
1 2 3

5

7 6

4

89

Finalize
Order

Sign In

Sign up for an
account

Gather User
Details

Display
Confirmation

Visit Product
Catalog

Add Product
to Cart

User Details
Known

Proceed to
Check Out

Signed In?

Known User?

Yes Yes

Yes

No

No

No

294

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 294

The GetProductList method to fill the data source is simply a wrapper around the GetProducts
method of the ShopManagerDB class. If scalability and performance is of the highest importance, you
could use the method in the Business Layer class to cache the data in the ASP.NET cache. However, the
current implementation always returns fresh data from the database. In Chapter 12 you learn how to
cache data using the new SqlCacheDependency, which removes items from the cache whenever the
underlying table in the database changes.

The GetProducts method in the ShopManagerDB class executes a stored procedure in the database to
get a list of products for the requested category. That list is then returned to the calling code as a generic
List with the new syntax (Of Product), which means a strongly typed list of individual products is
returned. To see how that all works, take a look at the code for the method:

Public Shared Function GetProducts(ByVal categoryId As Integer) As List(Of Product)
Dim productList As List(Of Product) = New List(Of Product)
Try
Using myConnection As New SqlConnection(AppConfiguration.ConnectionString)

Dim myCommand As SqlCommand = New _
SqlCommand(“sprocProductSelectListByProductCategory”, myConnection)

myCommand.CommandType = CommandType.StoredProcedure
myCommand.Parameters.AddWithValue(“@categoryId”, categoryId)

Dim theProduct As Product ‘Temp Product to add to our ProductList

myConnection.Open()
Using myReader As SqlDataReader = _

myCommand.ExecuteReader(CommandBehavior.CloseConnection)
While myReader.Read()
theProduct = New Product(_

myReader.GetInt32(myReader.GetOrdinal(“Id”)), _
categoryId)

theProduct.Title = myReader.GetString(myReader.GetOrdinal(“Title”))
‘ Other properties are set here
productList.Add(theProduct)

End While
myReader.Close()

End Using
End Using

Catch ex As Exception
Throw

End Try
Return productList

End Function

The method starts by declaring a string with the name of the stored procedure and a List of type
Product. With the special syntax of Of Product, the variable productList is capable of performing all
the actions defined in the List class (located in the System.Collections.Generic namespace), while
at the same time it can only work with Product instances. This gives you a very flexible yet type safe
way to work with collections of objects. Generics are a powerful but complex concept to understand.
Professional .NET 2.0 Generics by Tod Golding provides you with all the information you need to know to
successfully implement Generics in your code.

295

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 295

Next, a connection and a command object are constructed. The categoryId is passed up to the stored
procedure so it only returns products that are in the requested category. If the stored procedure returns
any results, the code inside the While loop creates a new instance of the Product class, sets its public
variables, and then adds the product to the product list. In the end, the list of products, possibly holding
zero, one, or many products, is passed back to the calling code.

You may have noticed the use of a Try Catch block to intercept any errors. Instead of logging the error
to a log file, or dealing with it, it is simply passed up using the Throw keyword. Because there isn’t much
to be done about a SQL error, for example, inside this method, the error is passed up to the calling code.
Eventually, the error will be caught by code in the Global.asax that was set up to handle these errors and
log them. If you want to log errors at the place where they occur, you can create a custom method like
LogError in the Helpers class that you call in each of the Catch clauses in addition to the Throw keyword.
This method could accept an object of type Exception, which it then logs to the event log, a database, a
text file, or an e-mail.

If you don’t like this almost-empty Catch block, you can remove the Try Catch altogether. In that case,
the error is passed up automatically. However, you then lose the ability to add a Finally block that you
could use to clean up resources, such as open connections. That’s why you’ll see the Try Catch block
with a Throw statement a lot in this and other chapters; that way, there’s already a code template in place
that you can extend later if required.

Instead of just Throw, other code examples you may have seen use Throw Ex to forward the caught
exception to the next layer. However, this is not recommended. By using Throw Ex, you effectively
destroy the call stack of the current execution. That way, final code that catches the exception (for example,
the code in the Global.asax that sends error messages by e-mail) has no way to find out where the exception
came from originally.

Adding a Product to the Cart
The GridView in the Product List page contains HyperLink controls that link to the ProductDetail.aspx
where a user can view more information about a product and add it to the shopping cart (number 3 in
Figure 9-13). The code in this page is very similar to that in the product list. But instead of a GridView, a
DetailsView control is used that is bound to the return value of the GetProduct method using an
ObjectDataSource. When the page loads, the ObjectDataSource calls into the business layer and
gets a single product specified by the ID in the query string. This product is then presented on the page
with the DetailsView control.

When a user clicks the Add to Cart button, a new instance of the product is created and added to the cart:

Dim productId As Integer
productId = Convert.ToInt32(Request.QueryString.Get(“Id”))
Dim myProduct As Product = ShopManager.GetProduct(productId)
ShopManager.AddProductToCart(myProduct)
Response.Redirect(“ShoppingCart.aspx”)

The new instance of the product is created using the GetProduct method. This is the same method the
ObjectDataSource control uses to display the product on the page. This instance is then passed to the
AddProductToCart method that in turn calls the Add method of the ShoppingCart:

Public Shared Sub AddProductToCart(ByVal theProduct As Product)
ShopManager.ShoppingCart.Add(theProduct)

End Sub

296

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 296

The user’s shopping cart is made accessible by the ShopManager class with a shared property called
ShoppingCart:

Public Shared ReadOnly Property ShoppingCart() As ShoppingCart
Get
If HttpContext.Current.Session(“ShoppingCart”) Is Nothing Then
HttpContext.Current.Session(“ShoppingCart”) = New ShoppingCart()

End If
Return CType(HttpContext.Current.Session(“ShoppingCart”), ShoppingCart)

End Get
End Property

The first time this property is accessed, a new instance of the ShoppingCart is created, stored in a session
variable, and then returned to the calling code. Subsequent calls to the property return the ShoppingCart
from session state. This way the shopping cart is always available.

If there is already an OrderedProduct with the same ID in the shopping cart, its quantity is increased
by one. Otherwise, a new instance of OrderedProduct is created. Its constructor expects an instance of
Product that is stored in a private variable called _theProduct and the initial quantity, which is set to 1.
The ordered product is then added to the _items list that represents the user’s shopping cart:

Public Sub Add(ByVal theProduct As Product)
For Each existingProduct As OrderedProduct In _items
If theProduct.Id = existingProduct.ProductId Then
existingProduct.Quantity += 1
Exit Sub

End If
Next
Dim myOrderedProduct As OrderedProduct = New OrderedProduct(theProduct, 1)
_items.Add(myOrderedProduct)

End Sub

The ShoppingCart.aspx Page
After the product has been added the user is taken to ShoppingCart.aspx, which displays the products.
This page by itself doesn’t do much. It has a few static text blocks that are displayed depending on
whether the cart contains any items. The actual shopping cart is displayed by embedding a user control
called ShoppingCartView:

<Wrox:ShoppingCartView ID=”ShoppingCartView1” runat=”server” />

The ShoppingCartView control, located in the Controls folder, contains a GridView that displays the
products and an ObjectDataSource that’s responsible for retrieving the items from the cart. To allow
deleting and updating of products, the ObjectDataSource control sets up the appropriate methods and
parameters for these actions:

<asp:ObjectDataSource ID=”odsShoppingCart” runat=”server”
TypeName=”ShopManager” DeleteMethod=”RemoveProductFromCart”
SelectMethod=”GetShoppingCartItems” UpdateMethod=”UpdateProductInCart”>
<UpdateParameters>
<asp:Parameter Name=”newQuantity” Type=”Int32” />

</UpdateParameters>
</asp:ObjectDataSource>

297

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 297

The SelectMethod, UpdateMethod, and DeleteMethod all call into the ShopManager class. The
GetShoppingCartItems method simply returns the public Items list of the ShoppingCart. As you
recall, this list is a strongly typed list of OrderedProduct items. This list is then bound to the GridView
using a mix of BoundField, ImageField, and TemplateField columns when the page loads.

Changing Items in the Cart
The Quantity column is a bit more complicated than other columns like Price or Title. In edit mode, the
GridView displays this column as a drop-down with the numbers 1 through 10 to allow a user to choose
a new quantity:

<asp:DropDownList ID=”lstQuantity” runat=”server”
SelectedValue=’<%# Eval(“Quantity”) %>’ AutoPostBack=”True”
OnSelectedIndexChanged=”lstQuantity_SelectedIndexChanged”>

<asp:ListItem Value=”1” Selected=”True”>1</asp:ListItem>
... Other items go here

</asp:DropDownList>

The SelectedValue for the drop-down list is bound to the Quantity property of the OrderedProduct
with the Eval method. It also has its AutoPostBack property set to True to automatically post back when
its selected value changes. When that happens, lstQuantity_SelectedIndexChanged is fired. This
method then calls the UpdateRow method of the GridView. This in turn causes the ObjectDataSource to
fire its Updating event, which fires right before it actually calls the Update method in the business layer.
The Updating event is an excellent location to set the parameters that need to be passed to the Update
ProductInCart method. In the section about the design of the WebShop, you saw that the UpdateProduct
InCart method expects the ID of the OrderedProduct in the shopping cart and the new quantity. These
values are passed through that method with the following code in the Updating event:

Protected Sub odsShoppingCart_Updating(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.ObjectDataSourceMethodEventArgs) _
Handles odsShoppingCart.Updating

e.InputParameters(“Id”) = _
New Guid(GridView1.DataKeys(GridView1.EditIndex).Value.ToString())

e.InputParameters(“newQuantity”) = Convert.ToInt32(_
CType(GridView1.Rows(GridView1.EditIndex).FindControl(“lstQuantity”), _
DropDownList).SelectedValue)

End Sub

The GridView that uses the ObjectDataSource control (GridView1) has its DataKeys property set to
Id, which uniquely identifies each OrderedProduct that is being displayed in the cart. The
ObjectDataSource sees this relation and automatically sets up a parameter for this Id field. In the pre-
vious snippet, that Id parameter is then given a value with this code:

e.InputParameters(“Id”) = _
New Guid(GridView1.DataKeys(GridView1.EditIndex).Value.ToString())

The item in the cart that is currently being edited is retrieved with GridView1.EditIndex. This index is
then passed to the GridView control’s DataKeys collection to get the unique Id for the OrderedProduct.
This Id is then converted to a GUID and assigned to e.InputParameters(“Id”), the first parameter
that the UpdateProductInCart method of the ShopManager class expects.

298

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 298

The new ordered quantity is passed to that method in a similar way. Because the GridView knows noth-
ing intrinsically about the Quantity of an OrderedProduct, an explicit parameter called newQuantity
has been set up in the <UpdateParameters> node of the ObjectDataSource that you saw earlier. In
the Updating event, this quantity is assigned a value with this code:

e.InputParameters(“newQuantity”) = Convert.ToInt32(_
CType(GridView1.Rows(GridView1.EditIndex).FindControl(“lstQuantity”), _
DropDownList).SelectedValue)

Again, GridView1.EditIndex is used to get the ID of the item that is being edited. However, in this
case not the DataKeys but the Rows collection is queried for an item with that ID. Rows(GridView1
.EditIndex) returns a reference to the row in the cart that is being edited. Then the FindControl
method is used to find a reference to the drop-down list with the new quantity. That quantity is converted
to an Integer and finally passed to the e.InputParameters(“newQuantity”) parameter so it is
eventually passed to UpdateProductInCart to update the ordered quantity for the OrderedProduct
in the cart.

In addition to the Quantity column, the Edit column also deserves a closer examination. By default,
when you add a CommandField with ShowEditButton set to True, you get a column that displays an
Edit button. Once you click that Edit button, the selected row becomes editable and the Edit button is
replaced with an Update and Cancel button.

For the shopping cart, the Update button is not desirable. The only item in each row that is editable is
the Quantity drop-down. This drop-down posts back automatically and updates the cart. An additional
Update button would confuse users. To remove the Update button, the CommandField is converted to a
TemplateField using the GridView control’s Fields dialog, shown in Figure 9-14.

Figure 9-14

299

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 299

To get at this dialog, right-click the GridView and choose Show Smart Tag. On the resulting GridView
tasks dialog, click Edit Columns. Then locate the column you want to convert to a template in the
Selected Fields list, and click the blue link with the text “Convert this field into a TemplateField” at the
bottom-right of the dialog. The column is then converted into an <asp:TemplateField> with an
<ItemTemplate> and an <EditItemTemplate>.

Removing the highlighted code from the code generated by the conversion process removes the Update
button from the column:

<asp:TemplateField ShowHeader=”False”>
<ItemTemplate>
<asp:Button ID=”LinkButton1” runat=”server” CausesValidation=”False”

CommandName=”Edit” Text=”Edit”></asp:Button>
</ItemTemplate>
<EditItemTemplate>

<asp:LinkButton ID=”LinkButton1” runat=”server” CausesValidation=”True”
CommandName=”Update” Text=”Update”></asp:LinkButton>

<asp:Button ID=”LinkButton2” runat=”server” CausesValidation=”False”
CommandName=”Cancel” Text=”Cancel”></asp:Button>

</EditItemTemplate>
<ItemStyle Width=”100px” HorizontalAlign=”Center” />

</asp:TemplateField>

When you click the Edit button for a product in the cart, the GridView switches to edit mode and displays
the EditItemTemplate for the quantity drop-down, as depicted in Figure 9-15.

Figure 9-15

You can now choose a new quantity by using just the drop-down; there is no need for an additional
Update button. If you change your mind, you can click the Cancel button to stop editing.

Deleting an item requires no additional code; when the Delete button is clicked, RemoveProduct
FromCart is called, which removes the ordered product from the shopping cart. However, to make the
cart a bit more user-friendly, the Delete button was converted to a TemplateField as well, with the exact
same method you just saw. With the Field converted to a TemplateField, it’s easy to ask users for confirmation
when they click the Delete button with the Button’s OnClientClick event:

<ItemTemplate>
<asp:Button ID=”btnDelete” runat=”server” CausesValidation=”False”
CommandName=”Delete” Text=”Delete” OnClientClick=”return confirm(‘Are you sure

you want to remove this product from your cart?’);” />
</ItemTemplate>

When users click Cancel on the confirmation dialog, nothing happens. If they click OK, the page posts
back to the server and the item is removed from the cart.

300

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 300

So far you have seen how the ObjectDataSource control is able to display, update, and delete items in the
shopping cart. This solution, where the page posts back to itself, has one interesting challenge, though. The
master page, on which the ShoppingCart.aspx page is based, has a ShoppingCartTotal control that
displays the number of items in the cart and the total order amount. The label with the totals is filled in the
Load event of the control. However, updating or removing the items from the cart happens after Page_Load.
This means that the label with the totals has been set even before the cart is updated, causing the label to be
out of sync with the actual shopping cart. To fix that problem, an event is implemented in the Shopping
CartView control that fires when the cart is updated. The following block of code shows you how the event
is declared, and how it is used in the RowUpdated method for the GridView:

Public Event CartUpdated As EventHandler

Protected Sub GridView1_RowUpdated(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.GridViewUpdatedEventArgs) _
Handles GridView1.RowUpdated

RaiseEvent CartUpdated(sender, New System.EventArgs())
End Sub

The first line of this example sets up an Event that the control can raise when the shopping cart is
updated. The next block shows the method GridView1_RowUpdated. This method fires whenever a row
in the GridView is updated. This method uses RaiseEvent to raise the CartUpdated event. Calling
code can subscribe to the event using the Handles syntax. This is done in the ShoppingCart.aspx page
like this:

Public Sub ShoppingCartView1_CartUpdated(ByVal Sender As Object, _
ByVal e As EventArgs) Handles ShoppingCartView1.CartUpdated

Response.Redirect(“ShoppingCart.aspx”)
End Sub

This example simply redirects the user to ShoppingCart.aspx, which then loads the fresh order total
from the cart into the ShoppingCartTotal control. As an alternative, you could create a method on the
ShoppingCartTotal control that updates the label and then call that method instead.

Finalizing Orders
When you’re happy with the products in your shopping cart, you can click the Proceed to Check Out button
to go to CheckOut.aspx (number 4 in Figure 9-13). However, this page is protected to unauthenticated
users with the follow settings in the Web.config file:

<location path=”Shop/CheckOut.aspx”>
<system.web>
<authorization>
<deny users=”?”/>

</authorization>
</system.web>

</location>

So instead of the Check Out page, you get the Login page. On this page, you can sign up for a new user
account or log in if you already have a username and password. Refer to the section called “Root Files”
earlier in this chapter to see how this page works.

301

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 301

Just like the Shopping Cart page, this Check Out page also contains a ShoppingCartView control to display
the products in the cart. However, in Page_Load of the Check Out page, the ReadOnly property of the
ShoppingCartView is set to True. When the ShoppingCartView control loads, it hides the columns
that contain the Edit and Delete buttons, effectively blocking the user from making any more changes to
the item in the cart:

If _isReadOnly Then
GridView1.Columns(5).Visible = False
GridView1.Columns(6).Visible = False

End If

If you click the Finalize Order button the following code checks if you have already completed your profile
information:

If Profile.ProfileCompleted = True Then
... Shown later
Else
Response.Redirect(“~/UserDetails.aspx”)

End If

When the Boolean value ProfileCompleted is False, you’re taken to UserDetails.aspx. This page presents
a series of text boxes where you can enter your first and last name and your address details. These
details are then stored using the built-in Profile provider:

Page.Validate()
If Page.IsValid Then
Profile.FirstName = txtFirstName.Text
Profile.LastName = txtLastName.Text
Profile.Address.Street = txtStreet.Text
Profile.Address.ZipCode = txtZipCode.Text
Profile.Address.City = txtCity.Text
Profile.Address.Country = txtCountry.Text
Profile.ProfileCompleted = True
If ShopManager.ShoppingCart.Count > 0 Then
Response.Redirect(“~/Shop/CheckOut.aspx”)

Else
Response.Redirect(“~/”)

End If
End If

As you can see, the Profile feature makes it very easy to store user-specific data. All you need to do is
assign the values from a control to the public profile property that’s been set up in the Web.config file.

After you complete the profile, you are either taken back to CheckOut.aspx, where you can review the
order and shipping details and then click the Finalize Order button, or you’re taken back to the homepage.
The code for the Finalize button retrieves the total order amount and then creates a new instance of a
Customer object that it passes to the FinalizeOrder method of the ShopManager class. The total order
amount must be retrieved here, because when FinalizeOrder has finished, the shopping cart is empty,
and it no longer has a total order amount:

Try
Dim orderAmount As Decimal = ShopManager.ShoppingCart.Total
Dim theCustomer As Customer = _

302

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 302

New Customer(CType(Membership.GetUser().ProviderUserKey, Guid), _
Profile.FirstName, Profile.LastName, Profile.Address.Street, _
Profile.Address.ZipCode, Profile.Address.City, Profile.Address.Country)

Dim orderId As Integer = ShopManager.FinalizeOrder(theCustomer)
Response.Redirect(“ThankYou.aspx?OrderNumber=” & _

orderId.ToString() & “&Total=” & orderAmount.ToString(“c”))
Catch ex As Exception
lblFailure.Visible = True
btnFinalize.Visible = False

End Try

The customer details come from two different sources — the customer ID is taken from the
MembershipUser class, which exposes a ProviderUserKey property that is unique for each user in the
system. All the other properties come from the user’s profile.

The FinalizeOrder method in the ShopManager class performs two actions. First it inserts the order
and order details in the database by calling FinalizeOrder on the ShopManagerDB class. When the
order has been saved successfully, the cart is then emptied to avoid the same order from being saved
twice. The FinalizeOrder method in the ShopManagerDB class contains quite a bit of code, so the
method is broken down in pieces and discussed line by line. The code begins by declaring a variable
called myTransaction of type SqlClient.SqlTransaction:

Public Shared Function FinalizeOrder(ByVal theShoppingCart As ShoppingCart, _
ByVal theCustomer As Customer) As Integer

Dim myTransaction As SqlClient.SqlTransaction = Nothing

The order is saved partially in the OrderBase table and partially in the OrderDetail table. This is done
with multiple INSERT statements. If any of the statements fails, you want to roll back the entire operation
to avoid having incomplete orders in the database. It’s the SqlTransaction object’s responsibility to
manage that process. All you need to do is wrap the code in a Try Catch block, assign the transaction
object to each SqlCommand object you want to execute, and call Commit or Rollback, depending on the
success of the operation. The SqlTransaction object is instantiated by calling the BeginTransaction
method of a connection:

Try
Using myConnection As New SqlConnection(AppConfiguration.ConnectionString)
myConnection.Open()

myTransaction = myConnection.BeginTransaction

The next block of code sets up the first SqlCommand object that inserts the order’s base data in the
OrderBase table:

Dim myCommand As SqlCommand = New SqlCommand(_
“sprocOrderBaseInsertSingleItem”, myConnection)

myCommand.Transaction = myTransaction
myCommand.CommandType = CommandType.StoredProcedure

With the SqlCommand object instantiated, it’s time to pass the customer’s details to the stored procedure
using SqlParameters and execute it. The code for the stored procedure isn’t shown here because it
doesn’t do anything special. All it does is insert a new record in the OrderBase table, returning its new

303

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 303

ID using the Scope_Identity() function of SQL Server. As of SQL Server 2000, Scope_Identity() is
preferred over @@IDENTITY because the former returns the ID created in the current scope, like a stored
procedure, whereas the latter could return an unrelated ID caused by a trigger on the table that you’re
inserting the record into.

The next step is to add the parameters to the SqlCommand object using the AddWithValue method:

myCommand.Parameters.AddWithValue(“@CustomerId”, theCustomer.CustomerId)
... Other parameters are added here
myCommand.Parameters.AddWithValue(“@Country”, theCustomer.Country)

Dim theReturnValue As SqlParameter = New SqlParameter()
theReturnValue.Direction = ParameterDirection.ReturnValue
myCommand.Parameters.Add(theReturnValue)

myCommand.ExecuteNonQuery()

The stored procedure returns the ID of the new record in the OrderBase table. That ID can be retrieved
from the parameter theReturnValue. Because the return value is passed back as a generic object, it
must be cast to an Integer using Convert.ToInt32:

Dim orderId As Integer = Convert.ToInt32(theReturnValue.Value)

The next block of code is responsible for inserting the order details and binding it to the OrderBase
record that was created earlier. Another SqlCommand object is set up and assigned the transaction object
that was created earlier (see the following code). This way this new command will participate in the
same transaction:

Dim myCommand2 As SqlCommand = _
New SqlCommand(“sprocOrderDetailInsertSingleItem”, myConnection)

myCommand2.Transaction = myTransaction
myCommand2.CommandType = CommandType.StoredProcedure

Just as with the first command, you need to pass parameters to the stored procedure. The code block
that sets the parameters for the myCommand object used the convenient AddWithValue method that sets
up the parameter automatically. However, in the case of the order details you cannot use that technique
because you need to be able to use the parameters multiple times; once for each ordered product in the
shopping cart. That’s why you need to declare and instantiate each parameter explicitly:

Dim orderBaseIdParam As SqlParameter = _
New SqlParameter(“OrderBaseId”, SqlDbType.Int)

myCommand2.Parameters.Add(orderBaseIdParam)

Dim productIdParam As SqlParameter = _
New SqlParameter(“productId”, SqlDbType.Int)

myCommand2.Parameters.Add(productIdParam)

Dim priceParam As SqlParameter = _
New SqlParameter(“price”, SqlDbType.Money)

myCommand2.Parameters.Add(priceParam)

Dim quantityParam As SqlParameter = _
New SqlParameter(“quantity”, SqlDbType.Int)

myCommand2.Parameters.Add(quantityParam)

304

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 304

With the explicit parameters set up it’s now very easy to reuse them in a loop and assign them a different
value that is retrieved from the ordered product being added:

For Each myOrderedProduct As OrderedProduct In theShoppingCart.Items
orderBaseIdParam.Value = orderId
productIdParam.Value = myOrderedProduct.ProductId
priceParam.Value = myOrderedProduct.Price
quantityParam.Value = myOrderedProduct.Quantity
myCommand2.ExecuteNonQuery()

Next

Just as the stored procedure that inserts the order base details, the stored procedure that inserts the order
details is very simple as well. It simply inserts the product ID, the price, and the quantity of each item,
and then relates the record to the OrderBase table by setting the OrderBaseId column. At this point, the
entire order has been saved successfully so you call Commit to commit the transaction in the database
and then return the new order ID to the calling code:

myTransaction.Commit()
Return orderId

End Using

If an error occurred anywhere in this method, the code in the Catch block is executed. By calling Rollback
on the transaction object you can let the database know that an error occurred and then it will undo any
changes it has made so far. At the end, you call Throw to pass up the error in the call chain:

Catch ex As Exception
myTransaction.Rollback()
‘ Pass up the error
Throw

End Try
End Sub

The order ID returned from the FinalizeOrder method in the data access layer is passed through the
business layer to the Check Out page. That page passes it, together with the total order amount, to the
Thank You page:

Response.Redirect(“ThankYou.aspx?OrderNumber=” & _
orderId.ToString() & “&Total=” & orderAmount.ToString(“c”))

The Thank You page instructs the user to transfer the money to the Wrox WebShop account before the
goods will be shipped. As a reference, the order number and total order amount are displayed. Passing
the order amount in the query string sounds like a security risk, but in this case it isn’t. The order has
been completely finalized so there is no way to change it anymore. Also, the goods won’t be shipped
until the customer has paid the full amount into the shop’s bank account.

This concludes the discussion of the front end of the web shop. With the finalization page, the whole
ordering process is complete. Users can browse the product catalog, add items to their shopping cart, get
a customer account and log in, and finalize their orders.

305

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 305

The Management Folder
The Management folder is used to allow an administrator of the site to make changes to the products in the
catalog. You have already seen most of the concepts used in this mini content management system in
Chapter 5. However, there may be one thing you’re unfamiliar with. Whenever you create a new product
and upload an image, three thumbnails are created automatically. In the classic ASP days, you’d need to buy
a commercial third-party component or write some hefty C++ to resize images automatically. However, in
the .NET era you need only a few lines of code. Take a look first at the code that fires whenever a new
product is about to be inserted. You find the following code in the FormView1_ItemInserting method in
the AddProduct.aspx.vb file:

‘ First. try to save the images
Dim theFileUpload As FileUpload = CType(_

FormView1.FindControl(“FileUpload1”), FileUpload)
If theFileUpload.HasFile Then
Dim fileNameSmall As String = “~/Images/Products/” & Guid.NewGuid.ToString()
Dim fileNameMedium As String = “~/Images/Products/” & Guid.NewGuid.ToString()
Dim fileNameLarge As String = “~/Images/Products/” & Guid.NewGuid.ToString()

Dim theExtension As String = Path.GetExtension(theFileUpload.FileName)

fileNameSmall &= theExtension
fileNameMedium &= theExtension
fileNameLarge &= theExtension
theFileUpload.SaveAs(Server.MapPath(fileNameLarge))

‘ Now resize the images
Helpers.ResizeImage(Server.MapPath(fileNameLarge), _

Server.MapPath(fileNameSmall), 40)
Helpers.ResizeImage(Server.MapPath(fileNameLarge), _

Server.MapPath(fileNameMedium), 100)
Helpers.ResizeImage(Server.MapPath(fileNameLarge), _

Server.MapPath(fileNameLarge), 250)

The code first checks if an image has been uploaded. If HasFile of the Upload control returns True,
three filenames are generated, one for each thumb. The extension for the files is determined by using
Path.GetExtension and passing it the name of the uploaded file.

The final block of code creates the three thumbs by calling Helpers.ResizeImage and passing it the
name of the image to resize, the name the thumb should be saved to, and the maximum width or height
for each image (40 for the thumb used in the shopping cart, 100 for the image in the product catalog, and
250 for the image on the detail page). You see the implementation for the ResizeMethod in Chapter 11,
where it’s discussed in full detail.

With this short description of the Management folder, you’ve come to the end of the “Code and Code
Explanation” section. The next section describes the installation process of the WebShop application.

306

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 306

Setting up the WebShop
You can choose to install the WebShop manually or by using the supplied installer application (available
on the companion CD-ROM and for download at www.wrox.com). You can use the installer when you
have IIS running on your machine and want to use it for the WebShop. Running the installer creates a
virtual directory under IIS. The folders it creates contain the full source.

Alternatively, you can choose to unpack the supplied zip file to a folder of your location. This gives you
a bit more choice with regards to where the files are placed, but you’ll have to set up IIS manually, or
browse to the site from within Visual Web Developer.

For both installation methods it’s assumed that the .NET Framework 2.0, which is an installation require-
ment for Visual Web Developer, has already been installed. It’s also assumed that you have installed SQL
Server 2005 Express edition with an instance name of SqlExpress. If you chose a different instance name,
make sure you use that name in the connection string for the WebShop in the Web.config file.

Using the Installer
On the CD-ROM that comes with this book, locate the folder Chapter 09 - WebShop and then open the
Installation folder. Inside that folder you’ll find two files: setup.exe and WebShopInstaller.msi. Double-
click setup.exe to start the installation. Keep clicking Next until the application is installed and then click
Close to finish the installation wizard.

The WebShop is now ready to be run under IIS. However, before you can use it you may have to config-
ure IIS to use the .NET Framework 2.0 version instead of version 1.x. Refer to the section “Changing IIS
Settings” in Chapter 5 for information about changing this setting.

Manual Installation
Another way to set up the WebShop is by manually extracting the files from the accompanying zip file to
your local hard drive. To install manually, locate the folder Chapter 09 - WebShop and then open the
Source folder. In that folder you’ll find a zip file called Chapter 09 - WebShop.zip. Extract the contents of
the zip file to a location on your hard drive (for example, C:\Websites). Make sure you extract the files
with the option Use Folder Names or something similar to maintain the original folder structure. You
should end up with a folder like C:\Websites\WebShop that in turn contains a number of files and
other folders. If you want to open the web site in Visual Web Developer, choose File➪Open Web Site,
and browse to the folder where you extracted the files.

Modifying Security Settings
The maintenance section of the WebShop creates thumbnail images automatically for each product you
add to the catalog. The account that your web site runs under needs permissions to write to that folder.
To change the settings, open Windows Explorer and locate the Images folder inside the WebShop. The
path should be something like C:\Inetpub\wwwroot\WebShop\Images, depending on where you
installed the application. Inside the Images folder you’ll find a Products folder. Right-click it, choose
Properties, and then open the Security tab, which is depicted in Figure 9-16.

307

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 307

Figure 9-16

Click the Add button and add one of the accounts from the following table:

If You’re Using Running On Add the Account

Windows 2000 IIS ASPNET

Windows 2000 Built-in web server of The account you use to log on to
Visual Web Developer your machine.

Windows XP IIS ASPNET

Windows XP Built-in server of Visual The account you use to log on to
Web Developer your machine.

Windows Server 2003 IIS Network Service

Windows Server 2003 Built-in server of Visual The account you use to log on to
Web Developer your machine.

If you don’t see a Security tab, open Windows Explorer, choose Tools➪Folder
Options, and then click the View tab. At the bottom of the Advanced Settings list,
make sure that Use Simple File Sharing (Recommended) is unchecked.

308

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 308

Once you add the account, make sure you give it at least Read and Write permissions.

Changing E-mail Settings
The WebShop uses e-mail functionality in a couple of places. Before you can use the functions that rely
on e-mail, such as the password reminder and the order confirmation, you need to change a few set-
tings. The first setting is at the top of the Web.config file in the root. Change the MailFromAddress ele-
ment, used by the PasswordRecovery control in Login.aspx, to your own e-mail address. Then at the
bottom of the Web.config file, change the settings in the <smtp> node.

The final change you need to make is in the file Global.asax, in the root of the site. In the
Application_Error method, set sendMailOnErrors to True if you want to be notified of errors by
e-mail. Near the end of the method, change the fake e-mail addresses in the line with New MailMessage
to your own address.

Managing Products
You can manage the products in the product catalog by clicking the Login link on the main menu of the
Wrox WebShop. You can log in with a username of Administrator and a password of Admin123# or
the account you created yourself in the previous section. Once you’re logged in, you’ll see the Admin
menu appear. If you click that menu item, you see two links that allow you to view the product list or to
enter a new product.

For a walkthrough of possible extensions you can develop for the WebShop, the companion CD-ROM
that comes with this book has an additional document with the details on implementing one of those
extensions: sending an order confirmation to the customer by e-mail. The CD-ROM also features the
complete source for this walkthrough. In addition, you can download the source from www.wrox.com.

Summary
The Wrox WebShop presented in this chapter features all the elements that you need for any serious
e-commerce web shop: a product catalog, a shopping cart, and a mechanism to store the orders in a
database.

The chapter started with a quick tour of the web site from an end-user’s point of view. You also saw how
to manage the product catalog in the protected Management section.

You then got a thorough look at the application’s design. You saw the classes the make up the business
and data access layers, and an explanation of each of the methods in these layers.

In addition to looking at the site from a customer’s point of view, you learned about the site’s classes,
user controls, and pages. In particular, you learned how to do the following:

❑ Build a business and data access layer to retrieve information about products and categories.

❑ Develop a shopping cart that stores the OrderedProducts in session state so they are available
throughout the lifetime of a user’s session.

309

Wrox WebShop

12_749516 ch09.qxp 2/10/06 9:18 PM Page 309

❑ Customize the GridView control and change its default behavior to streamline the user’s
browsing experience. By removing unneeded buttons, such as the Update button, the shopping
cart becomes easier and more intuitive to use.

❑ Use the SqlTransaction object in data access code to ensure that multiple database actions
either complete as a unit or are rolled back in case of a failure.

❑ Make use of the ASP.NET 20 Profile provider to store user details in the database. Instead of
writing custom code to get this information in and out of a database, you can now simply add a
few settings to the Web.config file, and these properties become available on the Profile class.

With the knowledge you gained in this chapter, you can now build full-featured e-commerce web sites
that are easy to manage, extend, and maintain.

310

Chapter 9

12_749516 ch09.qxp 2/10/06 9:18 PM Page 310

10
Appointment Booking

System

No matter what business you’re in or what organization you work for, a lot of day-to-day tasks
involve appointments. Whether you run a hairdresser shop, hire out conference rooms or laptops,
or you have a technical consultancy firm, you need a way to keep track of appointments that have
been made. Quite often these kinds of appointments are made by phone, and then written down
on sticky notes or saved in a calendar application like Microsoft Outlook or in a planning tool.
Wouldn’t it be great if you could remove all the hassle these phone calls bring and allow your
customers to make the appointments online?

The Appointment Booking System presented in this chapter allows you to do just that. The appli-
cation — which can be installed as part of your intranet or corporate web site — enables registered
end-users to check availability and make direct appointments. To minimize abuse of the system,
users have to sign up for an account and confirm their e-mail address before they can access the
system’s vital areas. Users from your organization have direct access to the appointments that
have been made online.

The chapter has a strong focus on working with controls. You see how to use some of the less-known
controls like the Wizard and the MultiView. You learn how to create reusable user controls with
custom properties and methods. Finally, you see how to create instances of server controls on the fly
using code in code-behind files to create output that cannot be achieved with the existing ASP.NET
2.0 server controls.

Using the Appointment Booking System
The Appointment Booking System consists of two parts: the public end-user section and the
maintenance section. The public user section is where end-users can sign up for an account, check
availability, and make appointments. To allow you to determine at run time what kind of appoint-
ments you want to book in the system, the system is built around a generic term called Booking
Objects. A booking object is the person or object — such as a mechanic or a conference room — you
can make an appointment with. Because this term doesn’t make sense to an end-user, the application

13_749516 ch10.qxp 2/10/06 9:19 PM Page 311

can be configured to display a user-friendly description, such as Mechanic, Hairdresser, or Conference
Room, instead. This configuration can be done in the Web.config file for the application or through the
administrative interface of the application. Because this configuration has an impact on the public interface,
that section is discussed first. After that, you see how to use the Appointment Booking System from an
end-user’s point of view.

The remainder of this chapter uses conference rooms as the booking object so whenever you see Conference
Room, think booking object and vice versa. However, because it’s likely you’ll use a different description
for the booking object, your screens will be slightly different than the ones you see in this chapter.

Maintaining the Appointment Booking System
If the application is installed, you can browse to it by entering http://localhost/Appointment
Booking in your browser (see “Setting up the Appointment Booking System” later in this chapter for
more details about setting up the application). The screen shown in Figure 10-1 appears.

Figure 10-1

The first thing you’ll need to do is change the user-friendly description of the booking object. To do this,
click the Management link in the left menu. You’ll be forced to log in first because the Management section
is protected and can be accessed only by users in the Manager role. Type Administrator as the user-
name and Admin123# as the password. Then click Application Settings in the Management menu (visible
in Figure 10-2) that has appeared and provide a name for the singular form and for the plural form of
your booking object.

So if you’re using this application to make appointments for hairdressers, type in Hairdresser and
Hairdressers. You can leave the Require Comments setting checked for now. This setting determines
whether users have to enter a comment when they make an appointment. The Start Time and End Time

312

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 312

settings determine the opening hours of your business. Changing these settings will impact the
Appointment Wizard, the Availability Checker, and the management pages; all of which are shown later.
Be aware that saving the settings forces an application restart as the new settings are written to the
Web.config file.

With the user-friendly name set up, click the second link in the Management menu (visible in Figure 10-2),
which should now display the name of the booking object you entered in the previous section. In addition
to that link in the Management menu, the page title and the introduction text of the page now also show
the user-friendly name you gave to the booking objects.

Figure 10-2

This page allows you to create new or change existing booking objects. The application comes with three
pre-installed booking objects, but you can click the Edit link to change the description for each booking
object. When you click Edit, the screen in Figure 10-3 appears.

Here you can give the booking object a title and determine between what times and on what days it’s
available for appointments. Once you’re done, click the Update link and you’re back at the page that
lists the booking objects. Use the New link to create as many booking objects as your application
requires. Note that in Figure 10-2 the link is called New Conference Room, but in your application it
should show the name of your booking object.

Once you create the booking objects, the application is ready for use by end-users. You see how the public
area of the web site works in the next section.

313

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 313

Figure 10-3

Making Appointments with the Appointment Booking System
To make the process of booking an appointment as simple as possible, the application features a wizard
that guides the user through the process. Two menu items allow you to access this wizard. First, you can
click the Check Availability link to see if your favorite booking object is available on a date and time of
your choice. If it is, you can make an appointment by clicking an available timeslot. The alternative is
through the Make Appointment menu option that allows you to make an appointment request directly.
Both these menu items are blocked for unauthenticated users, so you’ll need to create an account first.

Creating an Account
Before you can create an appointment, you need to have a valid account. You can create one on the Sign
Up page available from the left menu. This page features a standard CreateUserWizard control that
asks you for some information, such as your name and e-mail address. Once you have created an account,
you’ll receive an e-mail with a confirmation link that you’ll need to click before your account is activated.
This technique, called double opt-in, ensures that only users with a valid and confirmed e-mail address
can use your application. You see later how this double opt-in technique works. Once your account is
activated, you can login by clicking the Login link and then start using the Appointment Booking
System.

The Availability Checker
When you click Check Availability in the main menu, you’ll see a little calendar icon that allows you to
select a date for which you want to see the availability. When you select a date, the page reloads and you
see a screen similar to Figure 10-4.

314

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 314

Figure 10-4

On this screen you see a grid that displays the booking objects. The first row in the grid is the header
and displays the name of the booking object (Conference Room in this example) and the available hours,
ranging from 7 a.m. until 8 p.m. You can also see that for this date, only Conference Room 1 is available,
and only between 7 a.m. and 1 p.m. If you click Book for a free timeslot, you’re taken to the appointment
wizard that is discussed in the next section. You can click the calendar again to select a different date for
which you want to see the availability.

The Appointment Wizard
If you click Make Appointment in the main menu, the Booking Object Selection Wizard, depicted in
Figure 10-5, appears.

Figure 10-5

315

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 315

Notice that the text in the wizard menu and in the introduction text does not speak about general booking
objects, but uses the term that’s configured in the application, Conference Rooms in this case. You see
how this works later in this chapter when the code is discussed.

The wizard is pretty straightforward and thus easy to use. Click Next to select an available booking object,
then Next again to select a date, and then the time and duration. On the Comments page you can enter
comments to go with the appointment. For example, you can enter special instructions for the lunch you’d
like to have in the conference room. Finally, on the Review Your Request tab, you get a summary of the
selections you made. When you click Finish, you get a screen that either confirms your appointment or
explains to you that the requested booking object, date, and time are not available. In the latter case, you
can restart the wizard and make a different selection, or go to the Availability Checker to find out when
you can make an appointment.

Design of the Appointment Booking System
Similar to other applications you have seen in this book, the Appointment Booking System is built on a
three-tier approach, which means it has a data access layer, a business layer, and a presentation layer.
The data access layer is responsible for accessing the database and nothing else. The business layer is
responsible for checking of business rules and serves as the bridge between the data access layer and the
presentation layer. Finally, the presentation layer, which consists of .aspx and .ascx files, is responsible
for the interaction with the user.

In this section, you see the design of the classes and methods in the data access and business layer. You’ll
find the code for the business layer in a subfolder called BusinessLogic inside the special App_Code folder
in the root of the site. Similarly, you’ll find the classes for data access in a folder called DataAccess.

The presentation layer is discussed in the section “Code and Code Explanation” later in the chapter.

The Business Layer
The application uses two main entities that each has its own class: BookingObject and Appointment.
The BookingObject represents the real-life objects that you can make an appointment with, such as a
conference room, whereas the Appointment represents the actual appointment made. To be able to work
with instances of these classes, each class also has a Manager class that is capable of retrieving and saving
the other classes by interacting with the data access layer.

The business layer also has an enumeration called Weekdays that represents the available days of the week.

In the sections that follow, each of these classes and the enumeration are discussed in more detail.

BookingObject
The BookingObject class (see Figure 10-6) exposes only public properties that are stored in so-called
backing variables (the private fields prefixed with an underscore in the upper-half of Figure 10-6). Because
all interaction with instances of the BookingObject class is done by the BookingObjectManager class,
the BookingObject itself has no methods.

316

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 316

Figure 10-6

The following table describes the five public properties of the BookingObject class:

Property Type Description

AvailableOnWeekDays Weekdays This property is of type Weekdays, which is an
enumeration. This property is used to store multiple
days on which the booking object is available.

EndTime Integer The last hour that the booking object is available on
a day. Because the application books appointments
for a full hour, the maximum value for EndTime is
23, which means the booking object is available
until midnight. (The last appointment then starts at
11 o’clock at night and lasts until midnight.)

Id Integer The unique ID of the BookingObject in the
database.

StartTime Integer The first hour of the day that the booking object
becomes available; for example, 9 for 9 a.m.

Title String The description for the BookingObject, such as
Conference Room 1 — East Wing.

Next up is the BookingObjectManager class.

BookingObjectManager
This class is responsible for getting booking objects in and out of the database by interacting with the
data access layer. It’s also used to return a list with available working days from the data access layer
through its GetWorkingDays method. The class has the methods shown in Figure 10-7.

317

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 317

Figure 10-7

Because the class exposes shared methods exclusively, its constructor has been hidden by marking it as
Private. This prevents calling code from instantiating the BookingObjectManager directly. Besides
the constructor, the class exposes four shared and public methods that all call methods with the same
name in the BookingObjectManagerDB class in the data access layer:

Method Return Type Description

Public Shared Function BookingObject Returns a single BookingObject instance by
GetBookingObject (ByVal its ID.
id As Integer)

Public Shared Function DataSet Returns a list of available booking object
GetBookingObjectList () records as a DataSet.

Public Shared Function DataSet Returns a list with the available Working
GetWorkingDays() Days.

Public Shared Sub n/a Saves a new or an existing booking object in
SaveBookingObject the database.
(ByVal myBookingObject
As BookingObject)

With the BookingObject and BookingObjectManager classes done, the next class is the Appointment
class, which is used to make an actual appointment with a booking object.

Appointment
The Appointment class, shown in Figure 10-8, represents an appointment that has been made in the system.
It exposes only public properties that are used to track when the appointment takes place, who made it,
and for what booking object.

318

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 318

Figure 10-8

To help you understand what these properties are used for, the following table lists them all and
describes their purpose:

Property Type Description

BookingObjectId Integer The ID of the booking object in the database that this
appointment was booked against.

Comments String Stores the comment for an appointment. When a user
makes an appointment, she has the opportunity to add
a comment. Whether this comment is required depends
on the application’s settings.

EndDate DateTime The date and time the appointment ends.

Id Integer The unique ID of the appointment in the database.

StartDate DateTime The date and time the appointment starts.

UserEmailAddress String Holds the e-mail address of the user in the application
and is retrieved through the Membership services in
ASP.NET.

UserName String Holds the name of the user in the application and is
retrieved through the Membership services in ASP.NET.

319

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 319

Similar to the BookingObject class, the Appointment class also has an accompanying Manager class,
the AppointmentManager, discussed next.

AppointmentManager
The AppointmentManager class, depicted in Figure 10-9, has useful methods to get and create appoint-
ments. It can also determine whether a new appointment overlaps with an existing one, and it is capable
of retrieving appointment information from the database to feed the Availability Checker.

Figure 10-9

Just as with the BookingObjectManager, the constructor for the AppointmentManager (the New method
in Figure 10-9) has been hidden by marking it as Private. This prevents calling code from instantiating
objects from this class. You never require an instance of these classes, because they expose shared methods
that work only on a class and not on an instance of that class.

Besides the constructor, the AppointmentManager has five public and shared methods that all call methods
with the same name in the AppointmentManagerDB class. These methods are discussed in the following
table:

Method Return Type Description

Public Shared Function Boolean Checks whether the requested appointment
CheckAppointment overlaps with an existing one. It returns
(ByVal myAppointment True when the appointment passed in can
As Appointment) be made, or False when it overlaps.

Public Shared Function Boolean Creates an appointment in the database. It
CreateAppointment returns True when the appointment is
(ByVal myAppointment successfully made, or False when it could
As Appointment) not be booked.

Public Shared Function Appointment Retrieves a single instance of an appointment
GetAppointment (ByVal from the database by its ID. This method is
id As Integer) used in the reporting pages in the Manage-

ment section of the site.

Public Shared Function DataSet Retrieves a list of all the appointments for a
GetAppointmentList specific date from the database. This method
(ByVal selectedDate is used in the reporting pages in the
As DateTime) Management section of the site.

320

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 320

Method Return Type Description

Public Shared Function DataSet Returns a DataSet with two DataTables,
GetTimeSheet (ByVal holding booking objects and appointments.
selectedDate As DateTime) This DataSet is used generate the chart for

the Availability Checker.

The final object in the business layer that you need to look at is not a class, but an enumeration. This
enumeration, called Weekdays, is discussed next.

Weekdays
Although there is already good support for working with days of the week in .NET, the Appointment
Booking System features a separate enumeration that lists all of the available weekdays. This enumeration
allows you to store multiple selected weekdays in a single variable. The BookingObject uses this enumera-
tion to indicate on which day the object can be booked. Instead of this enumeration, the BookingObject
could expose seven Boolean properties, such as AvailableOnMonday, AvailableOnTuesday, and so
forth, but that makes the class look a bit cluttered. Using this Weekdays enumeration, displayed in Figure
10-10, you can store the availability for multiple days in a single variable.

Figure 10-10

With this simple enumeration, you can store, for example, Friday and Wednesday in a variable of type
Weekdays with the following code:

Dim myWeekdays As Weekdays = Weekdays.Wednesday Or Weekdays.Friday

Later, you can use similar code to determine whether a certain day has been stored in that variable:

If myWeekdays And Weekdays.Friday Then
‘ Friday was selected and stored in myWeekdays

Else
‘ Friday was NOT selected

End If

Because the Appointment Booking System is quite data-centric, it should come as no surprise it has its own
database and data access layer. In the next section, the two classes in the data access layer are discussed.
Once you understand how these classes work, you get a good look at the tables and stored procedures that
make up the database.

321

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 321

The Data Access Layer
Because the BookingObject and Appointment classes have no behavior themselves but are managed
by their respective Manager classes instead, they also have no companion class in the data access layer.
The only classes that interact with the stored procedures in the database directly are the
BookingObjectManagerDB and the AppointmentDB classes.

BookingObjectManagerDB
The BookingObjectManagerDB class (see Figure 10-11) exposes the exact same four public and shared
methods and the private constructor as the BookingObjectManager class. Of course this isn’t a coinci-
dence, because each method in the business layer forwards the call to a method in the data access layer.

Figure 10-11

Because the methods are identical as those in the BookingObjectManager in terms of signature, return
type, and functionality, they aren’t described here again. Refer to the description of the BookingObject
class earlier in this chapter for a full description of the four methods. The only difference between the
methods in the business and data access layer is, of course, their implementation. The methods in the
business layer forward their calls to methods in the data access layer. Those methods in turn perform the
real work and communicate with the database. You see how this works in the section “Code and Code
Explanation.”

AppointmentManagerDB
The AppointmentManagerDB class (see Figure 10-12) is responsible for getting appointments, lists of
appointments, and time sheet information from the database. It’s also capable of checking and creating
appointments.

Figure 10-12

Each of the methods in this class has the same signature as those in the AppointmentManager class in
the business layer, so refer to that section for more detail about their signatures and description.

322

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 322

In addition to these classes, the data access layer also consists of the database itself, including the stored
procedures used to access the data. The following section describes the data model of the Appointment
Booking System and describes each of the four tables.

The Data Model
The database for the Appointment Booking System contains three main tables and one junction table.
Both the BookingObject and the Appointment classes you saw in the design of the business layer have
their own table in the database.

There is also a table called WorkingDay that stores the available working days for the application. Don’t
confuse this table with the Weekdays enumeration. This enumeration always defines all seven days of
the week, whereas the WorkingDay table stores only the actual days of the week that are appropriate for
your booking objects. If your booking objects are available only during the week, you could remove
Saturday and Sunday from this table.

The final table in the database is called BookingObjectWorkingDay. This junction table relates a certain
booking object to one or more working days, as you can see in Figure 10-13. This allows you to have a
different availability for different booking objects.

Figure 10-13

The BookingObject and Appointment tables require a bit more explanation, so they are described in
more detail in the following two tables.

BookingObject

Column Name Data Type Description

Id int Stores the unique ID of each booking object.

Title nvarchar (100) Stores the title of a booking object such as Conference
Room 6.

StartTime datetime Stores the first available time a booking object is available
during the day. Although the column type is datetime,
only the time portion of the datetime is used.

EndTime datetime Stores the last available time a booking object is available
during the day. Although the column type is datetime,
only the time portion of the datetime is used.

323

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 323

This BookingObject table is the data store for the BookingObject class. Four of the properties of that
class have their own column in this table. The AvailableOnWeekdays property is not stored in that
table, but in the junction table called BookingObjectWorkingDay.

Similar to this, the Appointment class has its own table, also called Appointment.

Appointment

Column Name Data Type Description

Id int Stores the unique ID of the appointment.

UserName nvarchar (256) Stores the name of the user that made the appointment.

UserEmailAddress nvarchar (256) Stores the e-mail address of the user that made the
appointment.

StartDate datetime Stores the start date and time of the appointment.

EndDate datetime Stores the end date and time of the appointment.

Comments nvarchar (max) Stores the comments that a user may have added to the
appointment request.

BookingObjectId int Stores the ID of the booking object that this appointment
was booked against.

All of the interaction with the database is done through stored procedures. Some of the procedures are
pretty straightforward and require no explanation. The others that are a bit more complex are discussed
in detail when the inner workings of the Appointment Booking System are discussed.

Helper Classes
In addition to the classes and enumeration defined in the business and data access layer, the
Appointment Booking System has two more classes: an AppConfiguration class that exposes configu-
ration properties used throughout the application and a Helpers class that supplies a useful helper
method.

AppConfiguration
The AppConfiguration class (see Figure 10-14) is essentially a wrapper around some of the configuration
keys in the Web.config file. Although ASP.NET 2.0 provides a convenient way to bind keys from the
Web.config file to controls in the markup of a page using the new expression syntax you see later, you still
need to write some code to accomplish the same thing in code-behind files or in code in the App_Code
folder. To avoid repeating this code many times over, the AppConfiguration class provides convenient
access to the keys in the Web.config file through read-only and shared properties.

The BookingObjectNamePlural and BookingObjectNameSingular properties expose the user-
friendly descriptions of the booking object. These properties are used to customize the user interface in
the public and Management section of the web site.

324

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 324

Figure 10-14

The RequireCommentsInRequest property determines whether a user has to enter a comment in the
appointment wizard. You see how this works later.

The ConnectionString property is used by all methods in the two classes in the data access layer.

Helpers
The Helpers class, shown in Figure 10-15, provides one shared method —GetCurrentServerRoot—
that returns the full root URL of the current application.

Figure 10-15

Instead of hard-coding the application URL, like http://www.yoursite.com somewhere in your code,
this method determines the application’s address at run time. It is used to customize the opt-in e-mail
message in the Sign Up page that you see later.

Code and Code Explanation
Most of the pages in the root of the application and the Management folder are part of the public front
end and Management sections of the site and are discussed in full detail later. There are, however, a few
files and folders that you need to look at first.

Web.config
The Web.config file contains three <appSettings> keys and one connection string that map directly to
the four properties of the AppConfiguration class you just saw. Most of the other settings in this file
are either the default settings or have been discussed in previous chapters, so they aren’t covered here
anymore. The only exception are the three <location> nodes at the bottom of the file. These three
nodes block access to the Management folder and the files CreateAppointment.aspx and
CheckAvailability.aspx for unauthenticated users.

325

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 325

Global.asax
Just as in the previous three chapters, the Global.asax contains code that can send e-mail whenever an
error is raised in the site. The code is identical to that in Chapter 6, so refer to that chapter if you want to
know how the code works.

Default.aspx
This is the homepage for the Appointment Booking System and is based on the MasterPage.master page
(discussed next).

Master Pages
The public section and the protected Management section each have their own master page. The difference
between the public master (MasterPage.master) and the master page for the Management section
(ManagementMaster.master) is the inclusion of the ManagementMenu user control in the latter.

Other Files and Folders
In addition to the files in the root, the Appointment Booking System uses other files and folders as well:

❑ App_Themes: The App_Themes folder contains a single .skin file that controls the looks of each
<asp:Calendar> used in the web site. The <pages> node in the Web.config file instructs the
application to apply this theme to each page in the site.

❑ Controls: This folder stores the user controls that are used throughout the site. The MainMenu
and ManagementMenu controls are used to define the menus in the various pages in the site,
similar to other applications in this book. The HourPicker and TimeSheet controls are very
specific controls that are described in full later.

❑ Css: The Css folder contains two CSS files that control the general structure and look of the site
(Core.css) and that influence more specific elements, such as the time sheet and error messages
(Styles.css).

❑ Images: This folder contains the logo for the site, the calendar icon, and the arrow used in the
main menu.

❑ JavaScripts: This folder contains a single file called ClientScripts.js that holds a JavaScript function
used in multiple pages in the site.

❑ StaticFiles: The StaticFiles folder contains one HTML file with the contents for the opt-in e-mail.
This file is used as a template for the body of the confirmation e-mail that users receive after
they sign up for an account.

Now that you have seen the design of the application and database, it’s time to look at the actual func-
tionality of the site and the code that drives it. Instead of discussing the files in the application one by
one, a more usage-oriented approach is taken. You see the typical workflows of the application and the
files that are involved in the process.

326

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 326

The Availability Checker is discussed first, followed by the Appointment Wizard. You then see how the
Sign Up page with its double opt-in feature works. Near the end of the chapter, you see some of the
more complicated pages in the Management section.

The Availability Checker
As you saw in the section “Using the Appointment Booking System” at the beginning of this chapter, the
Availability Checker displays a time sheet for all available booking objects for a specific date. The pro-
cess for displaying the time sheet consists of the following steps:

1. Get the requested date from an <asp:Calendar> control on the page.

2. Get a list with available booking objects and appointments for the selected date from the
database in a DataSet.

3. Build up the time sheet by adding a table row for each available booking object:

❑ For each booking object in the DataSet, add an HTML row to the HTML table.

❑ For each booking object being added to the table, get the appointments for the selected
date from the database.

❑ For each hour on the time sheet, see if the booking object is available on that hour. If the
object is available, see if the hour conflicts with an existing appointment. If the hour
doesn’t conflict, add a link to allow a user to make an appointment.

4. Add a legend below the table, to visually differentiate the available and the unavailable hours.

The user interface for this functionality consists of two parts: the page CheckAvailability.aspx located in
the root of the site and a user control called TimeSheet.ascx that you find in the Controls folder.
Technically, the Time Sheet doesn’t have to be a user control and could have been placed in the
CheckAvailability.aspx directly. However, now that it is implemented as a user control, it’s easy to reuse
its functionality. For example, you could add another TimeSheet control on the homepage that shows
the availability for today’s date.

A huge improvement in working with user controls in Visual Web Developer is design-time support.
When your user control has public properties, they show up automatically in the control’s Property grid.
Changes to public properties are now stored in the markup for the control automatically. Take a look at
the TimeSheet control in the page to see how this works:

<Wrox:TimeSheet ID=”TimeSheet1” runat=”server”
StartTime=”<%$ AppSettings:FirstAvailableWorkingHour %>”
EndTime=”<%$ AppSettings:LastAvailableWorkingHour %>” />

In this case, both the StartTime and EndTime properties get their values from the Web.config file (you
see later what these properties are used for). Now if you look at the Property grid for the control you’ll
see Figure 10-16.

327

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 327

Figure 10-16

When you make a change to one of the properties, say you change EndTime to 23, the changes are auto-
matically persisted in the control’s markup:

<Wrox:TimeSheet ID=”TimeSheet1” runat=”server”
StartTime=”<%$ AppSettings:FirstAvailableWorkingHour %>”
EndTime=”23” />

Also, design-time rendering of user controls is now supported. Previous versions of Visual Studio just
displayed a gray box instead of the actual control. Because the TimeSheet control is built up almost
completely in the code-behind for the file at run time, you cannot benefit from this enhancement in the
CheckAvailability.aspx.

In addition to the markup for the TimeSheet control, CheckAvailability.aspx contains a number of other
controls, including a Calendar and a Label to allow a user to select a date for which they want to see
the availability. The introduction text of the page also contains a number of <asp:Literal> controls
that look like this:

<asp:Literal ID=”Literal1” runat=”server”
Text=”<%$ AppSettings:BookingObjectNameSingular %>”></asp:Literal>

The Text property of the Literal control is set using the new declarative expression syntax that allows
you to bind properties to application settings, connection strings, and localization resources (used to cre-
ate multi-lingual web sites). In this case, the Text property is directly bound to the appSetting key
called BookingObjectNameSingular. At run time, the value for this key is retrieved from the Web.con-
fig file and added to the page. You see this expression syntax used in other pages where the friendly
name of the booking object must be displayed.

Another important part of the Availability Checker page is the Calendar control. Whenever the user
selects a new date on the calendar, the control fires its SelectionChanged event, which is handled in
the code-behind for the page:

Protected Sub calAppointmentDate_SelectionChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles calAppointmentDate.SelectionChanged

If calAppointmentDate.SelectedDate.CompareTo(DateTime.Now.Date) < 0 Then
valSelectedDate.IsValid = False
divCalendar.Style.Item(“display”) = “block”

328

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 328

Else
divCalendar.Style.Item(“display”) = “none”
lblSelectedDate.Visible = True
lblSelectedDate.Text = “You selected: ” & _

calAppointmentDate.SelectedDate.ToShortDateString() & “”
lblInstructions.Text = _

“ Click the calendar again to select a different date:”
LoadData()

End If
End Sub

This code first validates the selected date. If the new date is in the past, the IsValid property of the custom
validator valSelectedDate is set to False. Otherwise, the label that displays the selected date is
updated and the LoadData method is called.

The LoadData method retrieves time sheet information from the database by calling AppointmentManager
.GetTimeSheet and passing it the selected date, as you can see in the following code block:

Private Sub LoadData()
If Not calAppointmentDate.SelectedDate = DateTime.MinValue Then
TimeSheet1.DataSource = _

AppointmentManager.GetTimeSheet(calAppointmentDate.SelectedDate)
TimeSheet1.SelectedDate = calAppointmentDate.SelectedDate
TimeSheet1.DataBind()

End If
End Sub

GetTimeSheet of the AppointmentManager class then forwards its call to the AppointmentManagerDB
class, which retrieves the time sheet information from the database. Take a look at the code for this
method to see how it works:

Public Shared Function GetTimeSheet(ByVal selectedDate As DateTime) As DataSet
Dim myDataSet As DataSet = New DataSet()

Using myConnection As New SqlConnection(AppConfiguration.ConnectionString)
Try
Dim myCommand As SqlCommand = _

New SqlCommand(“sprocTimesheetSelectList”, myConnection)
myCommand.CommandType = CommandType.StoredProcedure

myCommand.Parameters.AddWithValue(“@selectedDate”, selectedDate)

Dim myDataAdapter As SqlDataAdapter = New SqlDataAdapter()
myDataAdapter.SelectCommand = myCommand
myDataAdapter.Fill(myDataSet)

myDataSet.Tables(0).TableName = “BookingObject”
myDataSet.Tables(1).TableName = “Appointment”

myDataSet.Relations.Add(“BookingObjectAppointment”, _
myDataSet.Tables(“BookingObject”).Columns(“Id”), _
myDataSet.Tables(“Appointment”).Columns(“BookingObjectId”))

Return myDataSet

329

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 329

Catch ex As Exception
Throw

Finally
myConnection.Close()

End Try
End Using

End Function

Similar to other data access code you have seen in this book, this method creates a SqlConnection and
a SqlCommand object to retrieve information from the database. What’s different in this method is that
the stored procedure sprocTimesheetSelectList does not return a single result set, but that it returns
a result set for both the booking objects and the appointments:

CREATE PROCEDURE sprocTimesheetSelectList

@selectedDate datetime

AS

SELECT DISTINCT
b.Id,
b.Title,
b.StartTime,
b.EndTime,
(
SELECT COUNT(*) FROM BookingObjectWorkingDay WHERE BookingObjectId = b.Id
AND BookingObjectWorkingDay.WorkingDayId = DATEPART(dw, @selectedDate)

) AS AvailableOnSelectedDay

FROM
BookingObject b

SELECT
BookingObjectId,
StartDate,
EndDate

FROM
Appointment

WHERE
CONVERT(varchar(8), StartDate, 112) = CONVERT(varchar(8), @selectedDate, 112)
OR CONVERT(varchar(8), EndDate, 112) = CONVERT(varchar(8), @selectedDate, 112)

ORDER BY
StartDate

As you can see, this procedure has two SELECT statements; the first returns a list with all the available
booking objects and includes their ID, title, and the hours they are available. The inner SELECT COUNT(*)
statement is used to determine whether the booking object is available on the requested weekday by looking
at the junction table BookingObjectWorkingDay. It compares the weekday number (1 for Sunday, 2 for
Monday, and so on) against a record in the junction table for each BookingObject. When the count
returns 1, the booking object is available on the requested date; 0 means the object is not available.

The second SELECT statement returns a list with all the current appointments for all booking objects on
the requested date.

330

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 330

In the GetTimeSheet method, the two result sets that are returned from this stored procedure are added
to a DataSet by calling Fill. This demonstrates that a DataSet can really be seen as an in-memory
database. In many circumstances, a DataSet is used to hold just a single DataTable. However, in this
code two DataTables are stored in the DataSet. By default, multiple tables in a DataSet get a sequential
name, like Table2, Table3, and so forth. To be able to refer to the DataTables by name, they are renamed
as soon as they have been added to the DataSet:

myDataSet.Tables(0).TableName = “BookingObject”
myDataSet.Tables(1).TableName = “Appointment”

The first DataTable (with an index of 0) holds the booking objects returned from the database, so it gets
renamed to BookingObject. The second table is renamed to Appointment.

The final step in the GetTimeSheet method adds a DataRelation between these two tables. The
appointments in the second DataTable have a BookingObjectId that points back to a BookingObject
in the first DataTable. To relate these two result sets inside the DataSet, the following code is used:

myDataSet.Relations.Add(“BookingObjectAppointment”, _
myDataSet.Tables(“BookingObject”).Columns(“Id”), _
myDataSet.Tables(“Appointment”).Columns(“BookingObjectId”))

This DataRelation, called BookingObjectAppointment, allows you to retrieve all the child appoint-
ments for a certain booking object. The relation works very similarly to a traditional relation in a
database in that it allows you to retrieve related records in a child table for a record in the parent table.
You can get the rows in the child table by calling GetChildRows, which you see at work a little later.

At the end of this method, the DataSet is returned to the calling code in CheckAvailability.aspx, and
then assigned to the DataSource property of the TimeSheet.ascx control:

TimeSheet1.DataSource = _
AppointmentManager.GetTimeSheet(calAppointmentDate.SelectedDate)

TimeSheet1.SelectedDate = calAppointmentDate.SelectedDate
TimeSheet1.DataBind()

The DataBind method of the user control contains a lot of code, so not all of it is covered, but instead
you’ll see a few important sections. The method starts off with checking if the DataSource and the
SelectedDate have been set. Both are critical properties for the TimeSheet control to operate correctly,
so when one of the two is missing, an error is raised.

The code then declares two variables that can hold a DataRow (a row from a DataTable inside the
DataSet): one to hold a BookingObject and one for an appointment. Two other variables are declared
that can hold a TableRow and a TableCell (that represent the rows and cells of an HTML <table> in
the browser).

Next, a new TableRow and a TableCell are created. The cell’s Text property is set to the friendly name
of the booking object with AppConfiguration.BookingObjectNameSingular. The cell is then added
to the TableRow.

The number of hours that the TimeSheet control can display is configurable through two public proper-
ties on the control: StartTime and EndTime. For all the hours between these two values, a column is
added to the HTML table with the following code:

331

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 331

For i As Integer = _StartTime To _EndTime
myTableCell = New TableCell
myTableCell.Text = i.ToString()
myTableRow.Cells.Add(myTableCell)

Next
TimeSheetTable.Rows.Add(myTableRow)

So if the Appointment Booking System is set up to make appointments for conference rooms, and the
TimeSheet user control must display the hours from 7 a.m. until 7 p.m., the first row in the table looks
like Figure 10-17.

Figure 10-17

Both the friendly name of the booking object and the numbers serve as the column header for the rows
that are about to be added.

The code continues with another loop, this time for each row in the DataTable called BookingObject:

For Each myBookingObjectRow In _DataSource.Tables(“BookingObject”).Rows

Inside this loop, a new TableRow is created that gets a cell with the name of the booking object:

myTableRow = New TableRow()
myTableCell = New TableCell()
myTableCell.Text = Convert.ToString(myBookingObjectRow(“Title”))
myTableCell.Wrap = False
myTableRow.Cells.Add(myTableCell)

The next step is to create a table cell for each of the available hours on the TimeSheet. As with the column
headers you just saw, this is done with a loop that runs from _StartTime till _EndTime. On each iteration
of this loop, a new TableCell is created and added to the TableRow. A new HyperLink control is
created and added to the TableCell:

Dim myHyperLink As New HyperLink()
myHyperLink.NavigateUrl = String.Format(_

“~/CreateAppointment.aspx?” & _
“BookingObjectId={0}&SelectedDate={1}&StartTime={2}”, _
Convert.ToString(myBookingObjectRow(“Id”)), _
Server.UrlEncode(_SelectedDate.ToString()), i.ToString())

myHyperLink.Text = “Book”
myTableCell.Controls.Add(myHyperLink)
myTableCell.CssClass = “TimesheetCellFree”

This new HyperLink points to the CreateAppointment.aspx page and passes the selected date, the ID of
the booking object, and the current hour to that page in the query string. The Appointment Wizard uses
these query string variables to preselect the controls in the wizard, making it easier for the user to make
an appointment for the requested booking object, date, and time.

332

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 332

Once the TableCell contains the hyperlink, the code checks whether the current hour (the hour being
added to the TimeSheet) is actually available for new appointments. Four reasons exist for why the
current hour could not be available for booking:

1. The booking object is not available on the day of the week that the time sheet is currently
displaying.

2. The current hour is less than the starting hour of the booking object.

3. The current hour is greater than the end hour of the booking object.

4. There is already an appointment for the booking object that overlaps with the current hour.

The first three reasons are checked by a single If statement:

If i >= Convert.ToDateTime(myBookingObjectRow(“StartTime”)).Hour _
And i <= Convert.ToDateTime(myBookingObjectRow(“EndTime”)).Hour _
And Convert.ToInt32(myBookingObjectRow(“AvailableOnSelectedDay”)) > 0 Then

If all three of these conditions are not met, the code in the Else clause of this If statement removes the
hyperlink from the TableCell and sets the cell’s CssClass to TimesheetCellBusy:

Else
myTableCell.CssClass = “TimesheetCellBusy”
myTableCell.Controls.Clear()
myTableCell.Text = “ ”

End If

If all three conditions are met, the code continues to query the appointments for the current booking
object. It does this with the GetChildRows method of the DataRow with the booking object:

For Each myAppointmentRow In _
myBookingObjectRow.GetChildRows(“BookingObjectAppointment”)

As the relationName argument for this method, the string BookingObjectAppointment is passed,
which is the name of the relation that was set up in the GetTimeSheet method you saw earlier in this
chapter. Through this relation, the GetChildRows method is able to correctly identify the appointment
rows in the appointment DataTable that are related to the BookingObject row currently held in
myBookingObjectRow. The method GetChildRows returns those rows as an array of DataRows so you
can use For Each to loop through them:

For Each myAppointmentRow In _
myBookingObjectRow.GetChildRows(“BookingObjectAppointment”)

Dim currentDateAndTime As DateTime = _SelectedDate.Date.AddHours(i)
Dim startDate As DateTime = Convert.ToDateTime(myAppointmentRow(“StartDate”))
Dim endDate As DateTime = Convert.ToDateTime(myAppointmentRow(“EndDate”))

If currentDateAndTime >= startDate And currentDateAndTime < endDate Then
myTableCell.CssClass = “TimesheetCellBusy”
myTableCell.Controls.Clear()
myTableCell.Text = “ ”
Exit For

End If
Next

333

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 333

This code loops through all the appointments returned by GetChildRows and sees if they overlap with
the current date and time that is added to the TimeSheet. If the appointment does overlap, the
HyperLink control is removed from the TableCell and its CssClass is set to TimesheetCellBusy,
making the cell unavailable.

The remainder of the DataBind method creates an empty TableRow and a TableRow that holds a legend
with the colors and a label for available and unavailable hours. The code is pretty straightforward and
has quite a lot of comments, so you should be able to figure out how it works.

To see how all the code for the TimeSheet control ends up in the browser, imagine that the system is used
to book conference rooms. There are three conference rooms in the system. All three can be booked
between 7 a.m. and 7 p.m. For the first booking room, there is already an appointment on November 14,
from 2 p.m. until 4 p.m. If you request the time sheet with this setup, you see what appears in Figure 10-18.

Figure 10-18

In the time sheet you can see that both booking objects can normally be booked from 7 a.m. until (and
not including) 7 p.m. Because Conference Room 1–East Wing already has an appointment from 2 p.m.
until 4 p.m., those two hours are marked as unavailable on the time sheet.

From this time sheet, users can click the Book link for a specific booking object and hour. This transfers
them to CreateAppointment.aspx and passes along the selected date, hour, and ID of the booking object.

The page that allows users to create appointments is discussed next.

The Appointment Wizard
The CreateAppointment.aspx page contains a single <asp:Wizard> control and a <asp:MultiView>
control. The Wizard control collects information from users about the appointment they want to book, and
the MultiView is used to display information about the success or failure of this appointment request.

The Wizard control contains six wizard steps; one for each of the six Wizard menu items you saw at the
beginning of this chapter when the functionality of the Appointment Wizard was discussed. The following
table lists these steps and explains the data each step collects:

Step Title Step Index Description

Introduction 0 Displays a welcome message.

Select [Booking Object] 1 Displays a drop-down so the user can select a
booking object. The title of the step is determined
at run time with code in the Page_Load event.

334

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 334

Step Title Step Index Description

Select Date 2 Displays a calendar so the user can select a date
for the appointment.

Select Time 3 Displays a drop-down with starting hours (with
an HourPicker control that is explained later) and
a drop-down for the duration of the appointment.

Comments 4 Displays a text area so the user can add comments
to the appointment request.

Review Your Request 5 Displays a summary of all the data the user
entered.

The StepType of the first and last step has been set to Start and Finish, respectively. The other four
steps have their type set to Step. The StepType defines the buttons placed on the surface for each step.
With a Start step, you only see a Next button; for the Finish type, you see a Previous and a Finish button;
and for all the steps in between you see a Previous and a Next button, allowing you to move forward
and backward through the wizard steps. If you want to block your users from going back to a previous
step, you can set the AllowReturn property of the step to False. In the case of the Appointment
Wizard, this is not necessary, because the user can follow an arbitrary path through each of the steps of
the wizard.

When a user clicks the Next button on one of the steps, the current step is validated with code in the
Wizard’s NextButtonClick event:

Select Case e.CurrentStepIndex
Case 1
If Not ValidateStep(1) Then
e.Cancel = True

End If
‘ Other steps are validated here

End Select

This code checks that a booking object has been selected in the second wizard step (with an index of 1). If
the validation fails, because a required field wasn’t filled in, the Cancel argument of the WizardNavigation
EventArgs argument is set to True. When this property is set to True, the wizard does not proceed to the
next step, but stays on the current one instead so the user can fill in the required data.

The ValidateStep method itself uses a Select Case statement to determine which step needs to be
validated. Inside the Case block for each step index, the required controls are validated, as you can see
in the following code that checks the comments on step five (with an index of 4):

Case 4
If AppConfiguration.RequireCommentsInRequest AndAlso _

txtComments.Text.Length = 0 Then
reqComments.IsValid = False
wizAppointment.ActiveStepIndex = 4
Return False

End If

335

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 335

When the configuration file dictates that a comment is required and the txtComments text box is still
empty, the RequiredFieldValidator control’s IsValid property is set to False. Then the ActiveStep
Index is set to 4, to ensure that the user sees the error message and can fill in the required comment. At
the end of the If block, the method returns False to signal calling code that validation failed. When
validation succeeds, the method returns True.

This process is repeated for the other two steps (with the booking object and the date) to ensure they
contain valid data.

Once all the data is filled in correctly, users are presented with the final step that displays all the data
they entered. This is done in the ActiveStepChanged event when the ActiveStepIndex is 5 (the last
step). Before the data is shown to the user, ValidateAllSteps is called to ensure that each of the previous
steps is valid. Finally, when the user clicks the Finish button to finalize the appointment request, the
following code runs:

Protected Sub wizAppointment_FinishButtonClick(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs) _
Handles wizAppointment.FinishButtonClick

Page.Validate()
If Page.IsValid Then

If ValidateAllSteps() Then
wizAppointment.Visible = False

Dim myAppointment As New Appointment()
myAppointment.StartDate = _

calStartDate.SelectedDate.AddHours(hpTime.SelectedHour)
myAppointment.EndDate = _

myAppointment.StartDate.AddHours(Convert.ToInt32(_
lstDuration.SelectedValue))

myAppointment.BookingObjectId = _
Convert.ToInt32(lstBookingObject.SelectedValue)

myAppointment.Comments = _
Server.HtmlEncode(txtComments.Text)

Dim myUser As MembershipUser = Membership.GetUser()
myAppointment.UserName = myUser.UserName
myAppointment.UserEmailAddress = myUser.Email

If AppointmentManager.CheckAppointment(myAppointment) Then
AppointmentManager.CreateAppointment(myAppointment)
MultiView1.ActiveViewIndex = 0

Else
MultiView1.ActiveViewIndex = 1

End If
End If

End If
End Sub

The code first validates the entire page by calling Page.Validate(). If the entire page is valid, it calls
the custom ValidateSteps method again to ensure all steps contain valid data. Then a new Appointment
object is instantiated and its public properties are filled with the values from the controls on the wizard
and from the user’s membership data. The code then calls CheckAppointment to see if the appointment
can be made. The code for this method in the AppointmentManagerDB class is pretty straightforward,
so it isn’t shown it here. It’s the stored procedure for this method that needs a close examination:

336

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 336

CREATE PROCEDURE sprocAppointmentCheckAvailability
@bookingObjectId int,
@startDate datetime,
@endDate datetime

AS

SELECT COUNT(*)
FROM
BookingObject INNER JOIN
BookingObjectWorkingDay ON BookingObject.Id =

BookingObjectWorkingDay.BookingObjectId INNER JOIN
WorkingDay ON BookingObjectWorkingDay.WorkingDayId = WorkingDay.Id

WHERE

-- Check 1 - Select the correct BookingObject Id
BookingObject.Id = @bookingObjectId

-- Check 2 - Make sure the BookingObject is available on the
-- start and the end date
AND
(
DATEPART(dw, @startDate)IN (SELECT BookingObjectWorkingDay.WorkingDayId FROM

BookingObjectWorkingDay WHERE BookingObjectId = @bookingObjectId)
AND
DATEPART(dw, @endDate) IN (SELECT BookingObjectWorkingDay.WorkingDayId FROM

BookingObjectWorkingDay WHERE BookingObjectId = @bookingObjectId)
)

-- Check 3 - Make sure the appointment is between working
-- hours for the BookingObject
AND
(
(
-- If the Appointment is on the same day, make sure the start and
-- end time are between working hours
CONVERT(varchar(8), @startDate, 112) = CONVERT(varchar(8), @endDate, 112)
AND
DATEPART(hh, @startDate) >= DATEPART(hh, BookingObject.StartTime)
AND
DATEPART(hh, @endDate) <= DATEPART(hh, BookingObject.EndTime)

)
OR
(
-- Else, the end date is on the next day. Make sure the
-- booking object is available 24 hours a day
CONVERT(varchar(8), @startDate, 112) < CONVERT(varchar(8), @endDate, 112)
AND DATEPART(hh, StartTime) = 0
AND DATEPART(hh, EndTime) = 23

)
)

-- Check 4 - Make sure the BookingObject doesn’t have an appointment yet
AND (BookingObject.Id NOT IN (

337

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 337

SELECT
BookingObjectId

FROM
Appointment

WHERE
(@startDate >= StartDate AND @startDate < EndDate)
OR (@endDate > StartDate AND @endDate <= EndDate)

))

The stored procedure returns a number indicating whether the appointment can be made on the
requested date and time. When that number is 0, the appointment cannot be made. When the number is
1, it means the booking object is available on the requested date and time and does not have a conflicting
appointment.

The WHERE clause of this procedure is where all the action is. Right after the SELECT statement, it uses
four checks in the WHERE clause to determine whether or not the appointment can be made.

First, it filters out all booking objects except for the one with the ID that was passed in through the
@bookingObjectId parameter.

It then ensures that the booking object is available on the date that was requested. Because an appointment
could cross midnight into the next day, both the start date and end date are checked. It performs this
check by seeing if the day of the week of the requested date is present in the BookingObjectWorkingDay
table for the requested booking object.

The next check determines whether the booking object is available during the hours that the appointment
should take place. If the appointment takes place on a single day, it means that its start and end time
must be between the booking object’s start and end hour.

When the appointment crosses midnight into the next day, the booking object has to be available 24
hours a day (that is, a start time of 0 and an end time of 23). Note that this is a limitation of the current
Appointment Booking System. It does not allow for booking objects to be available for night shifts that
start on one day and end on the next. This does not apply to appointments though; if a booking object is
available 24 hours a day, you can make an appointment that ends on the next day.

The final check ensures that the booking object is not yet tied to another appointment by querying the
Appointment table and checking the start and end date of the requested appointment against the existing
appointments in the table.

When this complicated WHERE clause is carried out, it returns either 0 (not available) or 1 (available). This
value is then converted to a Boolean at the end of the CheckAppointment method in the
AppointmentManagerDB class:

Return Convert.ToInt32(myCommand.ExecuteScalar()) > 0

This value bubbles up all the way to the FinishButtonClick event in the CreateAppointment.aspx
page, where it is used to determine whether the appointment can be saved in the database:

338

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 338

If AppointmentManager.CheckAppointment(myAppointment) Then
AppointmentManager.CreateAppointment(myAppointment)
MultiView1.ActiveViewIndex = 0

Else
MultiView1.ActiveViewIndex = 1

End If

When CheckAppointment returns True, the appointment is saved in the database by the Create
Appointment method with code very similar to other insert code you have seen before. The only exception
in this method is that CheckAppointment is called again, to ensure that no other appointments have
been made since the check was carried out the last time.

If the appointment was saved correctly, the first view of the MultiView control is made visible. The
MultiView is a simple control that allows you to selectively hide or show data based on certain criteria.
In this case, View 1 (with an index of zero) is shown when the appointment was made successfully;
otherwise View 2 is shown, which displays a message to the user saying that the appointment could not

be made.

You may have noticed the user control called HourPicker. This is a custom user control saved in the
Controls folder in the root of site. In the user interface, this control displays a drop-down list with a
number of hours. To control the hours that appear in the list, the control has two public properties called
StartTime and EndTime. Whenever you change the values of one of these properties, the control calls
its internal CreateListItems method, which adds the required number of items to the drop-down list
with the following code:

Private Sub CreateListItems()
lstHour.Items.Clear()
For i As Integer = StartTime To EndTime
lstHour.Items.Add(New ListItem(i.ToString() & “:00”, i.ToString()))

Next
End Sub

First, Items.Clear is called to ensure the drop-down list contains no items. Then a loop is set up that
adds the requested number of hours, using the i variable as the value for each ListItem, and then uses
that same value followed by a colon and two zeros as the text for the item. To read from or set the
selected item in the drop-down list, you can query its SelectedHour property, which returns the under-
lying value of the selected item:

Public Property SelectedHour() As Integer
Get
If lstHour.SelectedIndex >= 0 Then
Return Convert.ToInt32(lstHour.SelectedValue)

Else
Return -1

End If
End Get
Set(ByVal value As Integer)
If lstHour.Items.FindByValue(value.ToString()) IsNot Nothing Then
lstHour.Items.FindByValue(value.ToString()).Selected = True

End If
End Set

End Property

339

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 339

Although the HourPicker is a very simple control, it enables you to quickly show drop-down lists with
hours on a page. The control is used in the public file CreateAppointment.aspx to allow a user to select a
start time. It’s also used in two files in the Management folder: Configuration.aspx and
CreateUpdateBookingObject.aspx.

The Sign Up Page
To protect your appointment system from getting bogus appointments from malicious users, it’s a good
idea to block access to the Appointment Wizard to unauthenticated users. This means users need a valid
account in your system before they can make an appointment. However, the default behavior for Create
UserWizard of the new ASP.NET 2.0 security framework allows a user to enter a fake e-mail address. As
long as the user enters an address that looks like an e-mail address, the ASP.NET 2.0 framework will happily
let the new user in. One way to overcome this problem is through a concept called double opt-in. With this
technique, a user’s account is not activated until he has confirmed his e-mail address. To do that, users
sign up for an account on a web site. Then they receive an e-mail with instructions about activating their
account. As long as the account is not activated, they are not allowed to log in. Once they activate their
account, you know they entered a valid e-mail address because they were able to carry out the instructions
they received on that very same e-mail address.

In traditional ASP and ASP.NET applications, creating such a double opt-in system meant quite a lot of
work. However, with the new security controls in ASP.NET 2.0, this is now simpler than ever. You need
to be aware of a few tricks to implement this system with the security controls. First of all, take a look at
the CreateUserWizard control in the SignUp.aspx page:

<asp:CreateUserWizard ID=”CreateUserWizard1” runat=”server”
DisableCreatedUser=”True” CreateUserButtonText=”Sign Up”
LoginCreatedUser=”False” CompleteSuccessText=”Your account has been

successfully created. You’ll receive an e-mail with instructions about
activating your account shortly.”>

<WizardSteps>
<asp:CreateUserWizardStep runat=”server” Title=””></asp:CreateUserWizardStep>
<asp:CompleteWizardStep runat=”server” Title=””></asp:CompleteWizardStep>

</WizardSteps>
<MailDefinition BodyFileName=”~/StaticFiles/OptInEmail.html”
From=”Appointment Booking <You@YourProvider.Com>” IsBodyHtml=”True”

Subject=”Please Confirm Your Account With the Appointment Booking System”>
</MailDefinition>

</asp:CreateUserWizard>

This code has a few important attributes. First, you should notice that DisableCreatedUser has been
set to True and LoginCreatedUser has been set to False. This means that when the account is created,
it is not activated yet, and the user is not logged on automatically.

The other important attribute is BodyFileName of the MailDefinition element. This property allows
you to point to a text file that is used as a template for the body of the e-mail message that users receive
after they sign up for an account. If you look at that file, you’ll see some text mixed with placeholders
marked by double hash marks (##). You’ll also see a link back to the ConfirmAccount.aspx page that
has a query string variable called Id. Users who receive the e-mail must click this link to activate their
account.

340

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 340

This file is read by the CreateUserWizard control right before it fires its SendingMail event. Inside
that event, the contents of that file are available through the Message.Body property of the e argument.
Using some simple Replace methods, the placeholders are replaced with the user’s data to customize
the e-mail message:

e.Message.Body = e.Message.Body.Replace(“##Id##”, _
Membership.GetUser(CreateUserWizard1.UserName).ProviderUserKey.ToString())

e.Message.Body = e.Message.Body.Replace(“##UserName##”, CreateUserWizard1.UserName)

Dim applicationFolder As String = _
Request.ServerVariables.Get(“SCRIPT_NAME”).Substring(0, _
Request.ServerVariables.Get(“SCRIPT_NAME”).LastIndexOf(“/”))

e.Message.Body = e.Message.Body.Replace(“##FullRootUrl##”, _
Helpers.GetCurrentServerRoot & applicationFolder)

This code replaces the placeholders in the message body with actual values. The ID in the query string
back to the account confirmation page is filled with the unique ID of the user by calling the following:

Membership.GetUser(CreateUserWizard1.UserName).ProviderUserKey.ToString()

The same technique is deployed to add the user’s UserName to the e-mail.

The second half of the code retrieves the name of the current server and application folder. It uses the
GetCurrentServerRoot method defined in the Helpers class to retrieve information about the
server’s name or IP address and port number that is used. This is very useful during development
because the path to the account confirmation page is not hard-coded in the application. On your devel-
opment workstation, this path might be something similar to
http://localhost:2137/AppointmentBooking, whereas on a production server it could return
something like http://www.YourDomain.com. This ensures that the link in the e-mail always points
back to the server from which the e-mail was requested.

After the final Replace method has been called, the mail body contains a link to the confirmation page
that looks similar to this: http://localhost:2137/AppointmentBooking/ConfirmAccount
.aspx?Id=be2e8119-09ba-485e-8e09-d20218ef3f64.

Once users click that link in the e-mail message, they are taken to the Account Confirmation page that
activates the account with the following code in the Page_Load event:

Try
Dim userId As Guid = New Guid(Request.QueryString.Get(“Id”))

Dim myUser As MembershipUser = Membership.GetUser(userId)
If myUser IsNot Nothing Then
myUser.IsApproved = True
Membership.UpdateUser(myUser)
plcSuccess.Visible = True

Else
lblErrorMessage.Visible = True

End If
Catch ex As Exception
lblErrorMessage.Visible = True

End Try

341

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 341

This code retrieves the unique user ID from the query string and creates a new Guid from it. This Guid is
used to retrieve a user from the Membership provider. If the MembershipUser object does not equal
Nothing, it means the user was found and the IsApproved field is set to True, the user account is
updated, and a confirmation message is shown. In all other cases, an error message is displayed.

With the explanation of the double opt-in technique, you have come to the end of the explanation of the
public area of the web site. What remains are a few pages in the Management section of the site.

The Management Section
Many of the concepts and techniques in the Management section shouldn’t be new for you. For example,
the page that lists the appointment details (AppointmentDetails.aspx) uses code you also saw in the Web
Shop application in Chapter 9. Also, pages like BookingObjects.aspx (that lists the available booking
objects) and CreateUpdateBookingObject.aspx contain a lot of familiar code. However, a few pages with
a twist need to be discussed in more detail.

Saving Configuration Information
The first page worth looking at is the page that allows you to change the application’s settings that are
stored in the Web.config file. This page is called Configuration.aspx. If you look at the markup for the
page, you won’t notice many odd things. The page contains an HTML table with two text boxes, a
checkbox, and two HourPicker controls that have their Text, Checked, or SelectedHour properties
bound to a value in the Web.config file using the expression syntax you saw before:

<asp:TextBox ID=”txtBookingObjectNamePlural” runat=”server”
Text=”<%$ AppSettings:BookingObjectNamePlural %>”></asp:TextBox>

So far, not much is new. However, if you look at the code for the button that saves the settings, things
turn out to be very different:

Dim myConfig As System.Configuration.Configuration = _
WebConfigurationManager.OpenWebConfiguration(“~/”)

Dim myElement As KeyValueConfigurationElement = Nothing

myElement = myConfig.AppSettings.Settings(“BookingObjectNameSingular”)
If Not myElement Is Nothing Then
myElement.Value = txtBookingObjectNameSingular.Text

End If

myElement = myConfig.AppSettings.Settings(“BookingObjectNamePlural”)
If Not myElement Is Nothing Then
myElement.Value = txtBookingObjectNamePlural.Text

End If

myElement = myConfig.AppSettings.Settings(“RequireCommentsInRequest”)
If Not myElement Is Nothing Then
myElement.Value = chkRequireCommentsInRequest.Checked.ToString()

End If

myElement = myConfig.AppSettings.Settings(“FirstAvailableWorkingHour”)

342

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 342

If Not myElement Is Nothing Then
myElement.Value = hpStartTime.SelectedHour.ToString()

End If

myElement = myConfig.AppSettings.Settings(“LastAvailableWorkingHour”)
If Not myElement Is Nothing Then
myElement.Value = hpEndTime.SelectedHour.ToString()

End If

Try
myConfig.Save()
Response.Redirect(“Default.aspx”)

Catch ex As Exception
litErrorMessage.Visible = True

End Try

Unlike how it was in ASP.NET 1.x, writing to the Web.config file is now very easy. Three steps are
involved: first, you need to get a reference to the current configuration using the OpenWebConfiguration
method of the WebConfigurationManager class. As the argument for the method, “~/” is passed to
indicate a virtual path to the root of the current site. This method has a few overloads allowing you to
open other files at different locations as well.

Once myConfig holds a reference to the config file, you then use the Settings property of the
AppSettings class to get a reference to a specific <appSettings> key defined in that Web.config file. To
get that reference, all you need to do is pass the name of the key to the indexer of the Settings object.
With this code example, all that is changed are a few values in the <appSettings> node, but the
Configuration class allows you to change other sections as well. For example, to change the connection
string for the web site, you can use this code:

myConfig.ConnectionStrings.ConnectionStrings(“AppointmentBooking”) _
.ConnectionString = New Connection String

Notice how the ToString() method is used for the RequireCommentsInRequest, StartTime, and
EndTime properties. Because the Value of the KeyValueConfigurationElement class is a string (the
Web.config file is just a text file so it can store only strings), you need to cast these Boolean and integer
values to a proper string.

The third and final step in writing to the Web.config file is calling Save() on the Configuration element.
Be aware that when you do that, the application will silently restart. This isn’t a problem in the current
Appointment Booking System because it doesn’t use sessions. However, if you use this code in a web site
that does use sessions, your users might lose valuable information when the application restarts. Just to be
sure the administrator knows what he’s doing, the application shows a warning when the page gets
submitted. This warning is added in the Page_Load of the page:

If Not Page.IsPostBack Then
btnSave.OnClientClick = “return confirm(‘Saving these settings “ & _
“might result in a loss of data for currently active users. Are you sure “ & _
“you want to continue?’);”

End If

343

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 343

This adds a confirmation dialog to the Save button so you get a warning dialog, and a way to cancel the
operation when you try to save the settings.

Although writing to the configuration file is now really easy in ASP.NET 2.0, you could still run into
problems when you execute this code. If the Web.config file on disk is read-only or the current user’s
account doesn’t have the necessary permissions, an error is raised. When that happens, the Catch block
in the code displays a label with some troubleshooting tips.

Managing Booking Objects
Another page that you need to examine a little closer is CreateUpdateBookingObject.aspx. Most of the
page contains code you’re familiar with to insert or update a booking object, but there is one control you
may not have seen before. At the end of the markup for the page, you’ll see a CheckBoxList control:

<asp:CheckBoxList ID=”chkLstWorkingdays” runat=”server”
DataSourceID=”odsWorkingDays” DataTextField=”Description” DataValueField=”Id”>

</asp:CheckBoxList>

This control works similarly to other list controls, such as the <asp:DropDownList>, but it displays
checkboxes with a label that allows a user to select one or more items. The DataSourceID of the control
is set to the ObjectDataSource control odsWorkingDays, which in turns gets a simple two-column
DataSet with the working days and their IDs from the database by calling GetWorkingDays in the
BookingObjectManager class.

When you’re editing a BookingObject, the selected working days for that object need to be preselected.
This is done with the code in Page_Load that also sets the other properties of the BookingObject:

chkLstWorkingdays.DataBind()
If Convert.ToBoolean(myBookingObject.AvailableOnWeekdays And Weekdays.Sunday) Then

chkLstWorkingdays.Items.FindByValue(“1”).Selected = True
End If
‘ Other days are checked here

To make sure that the CheckBoxList is displaying all working days from the database, DataBind() is
called first. Then the AvailableOnWeekdays property of the BookingObject is checked to see if it con-
tains a selection for Sunday. This is done with the following statement:

myBookingObject.AvailableOnWeekdays And Weekdays.Sunday

If this returns True, it means that Sunday is a part of the AvailableOnWeekdays property and the code
in the If block runs. That code simply searches the Items collection of the CheckBoxList for an item
with a value of 1 (the ID for Sunday in the database) and then changes its Selected property to True.
This process is repeated for all the seven days in the Weekdays enumeration.

This process is more or less reversed when the BookingObject is updated again in the Click event of
the Update button:

For Each myItem As ListItem In chkLstWorkingdays.Items
If myItem.Selected = True Then
Select Case Convert.ToInt32(myItem.Value)

344

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 344

Case 1 ‘ Sunday
myBookingObject.AvailableOnWeekdays = _

myBookingObject.AvailableOnWeekdays Or Weekdays.Sunday
‘ Other days are checked here

End Select
End If

Next

This code loops through all of the checkboxes in the CheckBoxList control. When the item is checked,
its value is used in a Select Case statement. In this code, when the Value of the checkbox equals 1, it
means Sunday was selected and the value of Sunday is added to the AvailableOnWeekdays property
of the BookingObject.

The code for the method GetBookingObject in the BookingObjectManagerDB class, responsible for
getting a single BookingObject from the database, uses the same technique to fill the property.

The only section that treats the selected working days differently is the code in the method SaveBooking
Object in the same BookingObjectManagerDB. Because SQL Server has no knowledge of the custom
Weekdays enumeration, the stored procedure that inserts and updates a BookingObject has seven
additional parameters; one for each of the available working days. The values of these parameters are used
in the procedure sprocBookingObjectInsertUpdateSingleItem to create a relation between a Booking
Object and a WorkingDay by adding a record in the BookingObjectWorkingDay table:

IF (@sunday = 1)
INSERT INTO BookingObjectWorkingDay
(BookingObjectId, WorkingDayId)

VALUES (@id, 1)

When @Sunday equals 1, it means Sunday was selected and a record is inserted in
BookingObjectWorkingDay.

Viewing Appointments
The final page that needs to be discussed is the page that allows users to get a report on the appointments
that have been made in the system. Right now, this page is accessible only by users in the Manager role,
simply because the entire Management folder has been blocked for all users except managers. In a real-
world scenario, it’s probably wise to make a second group, such as Planning, that is allowed to view the
reports without being able to make changes to the booking objects and the application settings. You can
use the Web Site Administration Tool (choose Website➪ASP.NET Configuration from the main menu in
Visual Web Developer) to create the role and then add an additional <location> node to the Web.config
file to open the Management folder for that group.

You can access the Appointments page by clicking Appointments in the Management menu. You then
need to select a date from the calendar for which you want to see the appointments. You’ll see a screen
similar to the one in Figure 10-19.

345

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 345

Figure 10-19

At first glance, you may not notice anything special about this page. All you see is a list with appointments,
each one nicely placed under its parent booking object. However, if you look at the source for both the
markup of the page and its code-behind, things are not as easy as they look. The markup for the page
features a nested Repeater. A nested Repeater is a Repeater control that has been placed inside the
<ItemTemplate> of another Repeater, referred to as the outer Repeater. Figure 10-20 shows three rows
of an outer Repeater. The <ItemTemplate> for each row displays some text (indicated by the three thin
lines) and the nested Repeater (the four stacked rectangles).

With a nested Repeater you can display hierarchical data that you cannot display with a single ASP.NET
control. The Appointments page makes use of this technique to display the appointments (inside the
nested Repeater) for each booking object (in the outer Repeater). The following code snippet shows a
trimmed-down version of both Repeater controls:

<asp:Repeater ID=”repBookingObjects” runat=”server”>
<ItemTemplate>
<h1>Appointments for <asp:Literal ID=”litTitle” runat=”Server”

Text=’<%# Container.DataItem(“Title”) %>’ /></h1>
<asp:Repeater ID=”repAppointments” runat=”server”>
<ItemTemplate>

Appointment with <asp:Literal ID=”litUserName” runat=”server”
Text=’<%# Container.DataItem(“UserName”) %>’ />

</ItemTemplate>
</asp:Repeater>

</ItemTemplate>
</asp:Repeater>

346

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 346

Figure 10-20

The outer Repeater, called repBookingObjects, has a single <ItemTemplate>. This template defines
an <h1> tag that displays the booking object’s title. You also see another Repeater that displays the
appointments that belong to the booking object that is displayed in the <ItemTemplate>. To see how
this control gets its data, you need to look at the LoadData method that is called whenever a user selects
a date from the calendar that is placed on the page:

Private Sub LoadData()
Dim dsAppointments As DataSet

If Not calAppointmentDate.SelectedDate = DateTime.MinValue Then
dsAppointments = _

AppointmentManager.GetAppointmentList(calAppointmentDate.SelectedDate)

repBookingObjects.DataSource = _
dsAppointments.Tables(“BookingObject”).DefaultView

ItemDataBound

1

ItemDataBound

2

ItemDataBound

3

347

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 347

repBookingObjects.DataBind()

If repBookingObjects.Items.Count = 0 Then
lblNoRecords.Visible = True

End If
End If

End Sub

If the calendar called calAppointmentDate has a valid date, a call is made to AppointmentManager
.GetAppointmentList, which returns a DataSet with two DataTables. Both the data access code for the
GetAppointmentList method and the stored procedure follow a pattern similar to the code for the
TimeSheet control, so it’s not repeated here. What’s important is that you recall that the DataSet holds
two DataTables: one for the booking objects and one for the appointments. The two are related to each
other with a DataRelation. It’s this relation again that is used to display the child records in the nested
Repeater.

The DataSource for the outer Repeater uses the first DataTable with the BookingObjects. When
DataBind is called, the Repeater creates an item (based on the <ItemTemplate>) for each row (a
DataRowView to be precise) in the DataTable’s DefaultView. The DefaultView exposes the underlying
data to the control, similar to a view in SQL Server. When the item is added to the Repeater, the control
fires its ItemDataBound event. Inside that event, you can retrieve the appointments for the booking
object that has just been added and add them to the nested Repeater:

Protected Sub repBookingObjects_ItemDataBound(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.RepeaterItemEventArgs) _
Handles repBookingObjects.ItemDataBound

Dim item As RepeaterItem = e.Item

If item.ItemType = ListItemType.Item Or _
item.ItemType = ListItemType.AlternatingItem Then

Dim repAppointments As Repeater = item.FindControl(“repAppointments”)
Dim myDataRowView As DataRowView = CType(item.DataItem, DataRowView)
repAppointments.DataSource = _

myDataRowView.CreateChildView(“BookingObjectAppointment”)
repAppointments.DataBind()

End If
End Sub

This code first checks whether ItemDataBound was called for an Item or an AlternatingItem. This is
necessary because the same event is also called for other ItemTypes, such as the Header and the Footer.
Then a reference to the nested Repeater is retrieved from the item object using FindControl, which is
then stored in the variable repAppointments. The next line of code casts the DataItem (the underlying
data used to build up the Repeater item) to a DataRowView because that is the actual object type of the
DataItem. The DataRowView then has a convenient method called CreateChildView that accepts the
name of a DataRelation as an argument. This method looks into the DataSet and retrieves all appoint-
ments that are related to the current booking object. The return value of this method can then be set as
the DataSource for the nested Repeater. The final step is to call DataBind, which causes the nested
Repeater to display all the appointments.

348

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 348

When you call DataBind on the nested Repeater it starts adding rows based on the data to which it is
bound. For each row it adds, it also fires its own ItemDataBound event, allowing you to do the same
trick over again. This way you can have multiple nested Repeaters to display detailed information.

In addition to the name of the user that made the appointment and the date and time, the nested
Repeater also displays a link to AppointmentDetails.aspx for each appointment. This page displays the
full details of the appointment, including the user’s e-mail address and the comments. The code for this
page uses the same techniques you have seen in other chapters, so it isn’t repeated here.

With the Appointments page done, you have a complete working Appointment Booking System. You
can set the name of your booking objects and manage the actual items in the Management section. Users
can sign up for an account, then check the availability of your booking objects and make an appointment.
Once the appointment has been made, you can access its details in the Management section again.

With the entire design and code implementation behind you, you hopefully can’t wait to get the application
installed and see for yourself how it works. The next section guides you through the process of setting
up the application.

Setting up the Appointment Booking System
Because the Appointment Booking System has no dependencies other than the SQL Server database, setting
it up is pretty easy. Once again, you can choose between an automated and a manual install. The automated
installer process allows you to set up the application to run under IIS. This is useful if you want to
deploy the system on your local intranet or Internet servers. If you want to look at the code in more
detail and play around with it, you should choose the manual installation process.

Using the Installer
To install the Appointment Booking System with the supplied installer, open the folder Chapter 10 -
Appointment Booking\Installer on the CD-ROM or from the code download and double-click setup.exe.
Keep clicking Next until you get a confirmation that the application has been installed correctly and then
click Close.

If you have a previous version of the .NET Framework installed on your machine, refer to Chapter 5 for
instructions about configuring IIS to use version 2.0 of the framework.

Manual Installation
You can also manually install the Appointment Booking System so you can open the application with
Visual Web Developer. To install manually, locate the folder Chapter 10 - Appointment Booking on the
CD-ROM or in the code download and then open the Source folder. In that folder you’ll find a zip file
called Chapter 10 - Appointment Booking.zip. Extract the contents of this file to a location on your hard
drive; for example, C:\Inetpub\wwwroot\. It’s important that the files are extracted with the original
folder structure. Depending on your extracting utility, this option is called something like Use Folder
Names or Extract Pathnames. You should end up with a folder like C:\Inetpub\wwwroot\Appointment
Booking that contains the files and other folders for the application.

349

Appointment Booking System

13_749516 ch10.qxp 2/10/06 9:19 PM Page 349

Configuring the Application
No matter which installation method you chose, you may need to configure the Web.config so it uses
your installation of SQL Server. Open Web.config, located in the root of your installation folder, and
locate the <connectionStrings> node. The SQL server that is used in the connection string
AppointmentBooking is called (local)\SqlExpress, which is the default instance name for a SQL
Server Express installation. If you installed SQL Server with a different name or on a different server, be
sure to adjust the connection string.

If you’re using the full version of SQL Server, you can attach the supplied database as ASPNETDB
through the SQL Server Management Studio application. Then you should modify the connection string
again so it looks similar to this:

“Data Source=YourSqlServer;Initial Catalog=ASPNETDB;Integrated Security=SSPI;”

It’s also important that you grant the necessary permissions to the ASP.NET worker process to access
this database. On a default installation of ASP.NET, this account is called ASPNET on Windows 2000 and
Windows XP, whereas it is called Network Service on Windows Server 2003. If you don’t allow anonymous
access to the web site, but use Windows Integrated Security instead, be sure to grant at least Read and
Write permissions to the accounts (through group membership, for example) that need to access the
Appointment Booking System.

Now that you know all about the Appointment Booking System, browse to this book’s download page
at www.wrox.com for a walkthrough of possible modifications to the system.

Summary
In this chapter you have seen how to design and create an online appointment booking system. You saw
how the application can be configured dynamically to change the name of the so-called booking objects
into a user-friendly description. Users of the application can sign up for an account, check availability of
their favorite booking object, and make an appointment. Authorized users can manage the booking
objects in the system and view the appointments that have been entered in the system.

You then got a good look at the design of the system. You saw the classes that make up the business and
data access layer, and you saw the design of the database and its stored procedures.

The examination of the code showed you how it all fits together. You were introduced to the versatile
Wizard control and saw how to dynamically create controls in the code-behind of a user control to create
a unique user interface that cannot be created with the available ASP.NET server controls alone. You
learned how to create stored procedures that return multiple result sets to create DataSets with related
tables. You also saw how to bind these DataSets to a nested Repeater control.

Toward the end of the chapter the installation procedure for the Appointment Booking System was
explained. The supplied installer allows you to deploy the application on a server with IIS installed, and
the manual procedure allows you to examine and play with the code from within Visual Web Developer
Express edition.

350

Chapter 10

13_749516 ch10.qxp 2/10/06 9:19 PM Page 350

11
Greeting Cards

Most of the chapters in this book so far had a strong focus on many of the new and exciting
ASP.NET 2.0 server controls. In addition to controls like the Wizard, the MultiView, and the new
Navigation and Login controls, you also saw how to work with data-centric controls like the
SqlDataSource and the ObjectDataSource.

Because these controls are so easy to use, allowing you to build applications in no time using drag-
and-drop, you may almost forget that ASP.NET 2.0 largely depends on the underlying .NET 2.0
Framework. This framework not only enables ASP.NET pages, but it also allows you to create
Windows Forms application, Windows services, command-line tools, and many other types of
applications. In addition to direct support for these applications, the .NET Framework also has a
lot of technologies that are not directly tied to one of the application types, but that can be used in
those applications.

One of those enabling technologies is called GDI+, which stands for Graphics Device Interface.
GDI+ and its predecessor GDI have been around for a long time in various flavors of Microsoft
Windows and provide the OS with vector graphics, imaging, and typography capabilities. With
the advent of the .NET Framework version 1.0, the capabilities of GDI+ became available as man-
aged code within the .NET Framework. This makes it very easy to create complex drawings and
images in .NET.

Although Visual Web Developer Express edition is limited in a number of ways compared to its
bigger brothers Visual Studio Standard, Professional, and Team System editions, you still have full
access to the entire feature set of the .NET Framework. This also means you have full access to the
huge GDI+ library that is part of the .NET Framework.

In this chapter you see how to use some techniques for working with images that are used fre-
quently in many ASP.NET web sites. You see how to handle and save an uploaded file, rotate or
flip it, crop it, and add text to the image on the fly.

This chapter uses a Greeting Card application to showcase all these techniques. However, because
of the design of the application, you should find it very easy to use and reuse existing parts of this
application in one of your own that serves a completely different purpose.

14_749516 ch11.qxp 2/10/06 9:20 PM Page 351

To give you a feel for what can be accomplished with GDI+ in the .NET Framework, the next section
guides you through creating your own greeting card. Once you’ve seen how to upload, alter, and
e-mail an image, you see how the application is designed in the section “Design of the Greeting Cards
Application.” After the design, you get a good look at the actual implementation in the section “Code
and Code Explanation.” As usual, the chapter ends with instructions for installing the application.

Creating Your Own Greeting Card
If you’ve set up the application as per the instructions in the section “Setting up the Greeting Card
Application” later in this chapter, you can start creating your own greeting card by browsing to http://
localhost/GreetingCards. The Greeting Card application allows you to upload one of your favorite
images. You can then customize it by cropping and rotating it and by adding text to it. The final stage of
the application allows you to send the customized picture by e-mail.

The first screen you see welcomes you to the site and invites you to click Start to create your own per-
sonal greeting card. On the next screen, you see a file dialog that allows you to select an image you can
upload to the server. You can choose an image type like JPG, GIF, or PNG. It doesn’t really matter how
large the image is because it’s scaled to the maximum dimensions of 640×480 pixels automatically.

Once the image has been uploaded, the Rotate or Flip page appears, shown in Figure 11-1, with the
scaled version of your image.

Figure 11-1

352

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 352

On this page, you can use the controls on the right to rotate or flip the image. You can use the drop-
down to try out the various rotate and flip options. Once the image looks good, click the Next button.
You are presented with the Crop Image screen (see Figure 11-2), which allows you to select a portion of
the image.

If you want the entire image to be used in the greeting card, click Entire Image; otherwise use the two
sets of four navigation buttons on the right to move the crop area (the black rectangle in Figure 11-2)
over the image and to resize the area. You can use the pixels drop-down list in each of the fieldsets to
control the number of pixels the crop area is moved or resized. Once you have positioned the crop area
at the correct location, click Preview Image and the image is cropped to the part that falls within the
selection area. If you’re not satisfied with the results and want to make adjustments, click Undo and set
a new crop area. Otherwise, click the Finalize Image button.

The next step is to add text to the image. Click the image at the location where you want the text to
appear. Once you’ve clicked the image, the page refreshes and now shows a few controls visible in
Figure 11-3 that allow you to enter text and determine that text’s font, color, and size. Click Add Text to
add the text on the image. If you want to move around the text on the image, simply click its new loca-
tion (the location where you click determines the upper-left corner of an imaginary box around the text)
and the text is moved to that spot.

Figure 11-2

353

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 353

Figure 11-3

If the text doesn’t fit, or its color doesn’t look good on the background image, choose a new size, font,
or color from the controls on the right side of the screen. Use the Add Text button again to update the
image with the new font settings. If you want to start all over with the image from the previous step,
click the Undo button.

If you’re happy with the results, click Next once more to go to the Send Mail page. Here you can enter
your name, an e-mail address of the person you want to send the greeting card to, and a personal mes-
sage to accompany the card. After you click the Send Mail button, the image and the personal message
are e-mailed to the address you provided. Depicted in Figure 11-4, the image shows up as an embedded
image in the mail message in the recipient’s e-mail program.

Now that you have seen the capabilities of the Greeting Card application, it’s time to look at its design to
see what classes, methods, and properties are behind this functionality.

In the next section you see the design of the application; you see the four classes in the special App_Code
folder and their methods. Once you have a good understanding of the important elements of the appli-
cation, you see the actual implementation in the section “Code and Code Explanation.”

354

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 354

Figure 11-4

Design of the Greeting Cards Application
Unlike many of the applications you have seen in this book so far, the Greeting Cards application does
not rely on or use a database. Although you could use a database to extend the application by storing
user profiles or information about the cards that get sent, the current application does not need a reliable
state storage. All the information the application needs is either saved as the actual image or stored in
the page’s ViewState. This also means the application is not built around a three-tier architecture. You
won’t find the familiar BusinessLogic and DataAccess folders in the App_Code folder of the site. Instead,
you’ll find a separate folder called Toolkit with two files, visible in Figure 11-5. This folder contains code
for the functionality to upload and resize images.

The name Toolkit is not completely arbitrarily chosen. Just as a regular toolkit, it contains all kinds of
useful tools that you can easily deploy in multiple applications. These tools (the methods in the classes
in the Toolkit) can perform complex operations while hiding the details of the complexity completely
from you. The Toolkit has been designed in such a way that it is very easy to reuse the same code in
other applications. All you need to do is copy the Toolkit folder to the App_Code folder of another
application and you’re good to go.

If you own a copy of Visual Studio 2005 Standard, Professional, or Team System edition, you can even
put this code into a Class Library project and compile it to a DLL file. You can then reference this DLL in
your applications, including those you build with Visual Web Developer Express edition. A great advan-
tage of a DLL file is that you’re reusing binary code, not the actual source file. This means that if you
enhance the Toolkit or fix a bug, you don’t have to update all the individual files but only a single .DLL
file instead.

355

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 355

Figure 11-5

The other two files in the App_Code folder contain the application’s configuration class (AppConfiguration
.vb) and a class that derives from System.EventArgs, called FileHandlingEventArgs. Both these classes
are discussed in detail later.

The classes that make up the Toolkit are discussed in the following section.

The Toolkit
If you look at the actions that the application is capable of performing, you’ll notice two distinct areas.
The first deals with uploading files from the client’s computer to the web server. The behavior for this
functionality has been put in the class UploadHandler. The second area deals with image processing;
resizing, cropping, and so on. This is done by code in the Imaging class. To make these classes more
accessible through IntelliSense and to avoid name collisions with existing classes with the same name,
they have been put in the namespace Toolkit. You see more of this later.

The Imaging Class
The Imaging class is responsible for all the operations on images you saw at the beginning of this
chapter, including resizing, rotating, flipping and cropping images, and adding text on top of an image.
Figure 11-6 displays the class diagram with the methods of the Imaging class. When you take into
account the overloaded versions of some methods, the Imaging class has 20 methods in total.

All of these methods are shared, which means they operate on the class rather than on an instance of that
class. To stop calling code from creating useless instances of the Imaging class, its constructor (the New
method) has been marked as Private. This is indicated by the little lock symbol in front of the New method
in Figure 11-6.

356

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 356

Figure 11-6

All of the other methods are listed in the following table. Because most of these methods have long argu-
ment lists, the table lists only the name of the method and not its arguments and their types. Refer to the
section “Code and Code Explanation” later in this chapter for a description of these parameters, or look
in the code for the Imaging class at the XML comments that are placed in front of each of the methods.
These comments describe the purpose of each method and its parameters.

Method Return Type Description

AddTextToImage n/a This method is capable of adding text on top of an
image at a specified location and in a specific font
and color. This method has one additional overload.

CropImage n/a Crops an image passed to this method to a specified
region. This method has one additional overload.

DrawRectangle n/a Draws a rectangle on top of an image. This method
has one additional overload.

GetColors Color() Returns an array of Color objects. This method can
return either all known colors, or return a list with-
out the system colors such as ActiveBorder or
WindowText.

GetFontFamilies FontFamily() Returns an array of FontFamily objects for the
machine where this method is called.

GetImageFormat ImageFormat Returns the format of the image passed to
this method, such as ImageFormat.Jpeg,
ImageFormat.Png, and so on.

GetImageHash String Calculates the hash of an image. This method is
useful for comparing two images. Because
generating a hash always returns the same value for
identical data, you can compare two images through
code without looking at them.

Table continued on following page

357

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 357

Method Return Type Description

GetImageSize Size Returns the size of an image in pixels as a Size
object.

GetRotateTypes String() Returns a list with the available rotating types as a
String array. The array includes types like
Rotate90FlipNone to indicate a rotation of 90
degrees clockwise.

ResizeImage n/a Resizes an image to the specified size or to a maxi-
mum height or width. This method has five addi-
tional overloads.

RotateImage n/a Rotates and flips an image in the specified direction.
This method has one additional overload.

Not all of these methods are used in the Greeting Cards application. GetImageHash and GetImageFormat
are not used at all, but because they could be very useful in other applications, they have been included in
the Toolkit anyway. Refer to the accompanying code for more details on these methods.

Most of the overloads that work with an image expect the names of the source and target files as a
string. For example, the signature for the CropImage looks like this:

Public Shared Sub CropImage(ByVal fileNameIn As String, ByVal fileNameOut As
String, ByVal theRectangle As Rectangle)

The parameter fileNameIn determines the source file, and fileNameOut defines the file the cropped
image should be saved to. To make it easier for you to overwrite an existing file without specifying the
same name of the file twice in your code, these methods have an overload that has almost the same sig-
nature but without the fileNameOut parameter. Internally they call the overloaded version, passing it
the same name for both the parameters. The following code snippet shows the implementation of the
CropImage method that calls an overload:

Public Shared Sub CropImage(ByVal fileNameIn As String,
ByVal theRectangle As Rectangle)

CropImage(fileNameIn, fileNameIn, theRectangle)
End Sub

With this method, external code needs to pass the filename only once and the method ensures that the
source file is overwritten automatically with the new and cropped image.

The UploadHandler Class
The UploadHandler class is a simple yet very powerful class used to make uploading files in an
ASP.NET application a lot easier.

Usually, when you upload a file, you perform all kinds of checks on the uploaded file. For example,
you may try to find out if the user uploaded a file at all, and whether it has the required extension. The
UploadHandler class can handle this for you. All you need to do in the code-behind of a page is create a
new instance of the UploadHandler, set a few properties (most of them have sensible defaults), and call

358

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 358

UploadFile and pass it an instance of an <asp:FileUpload> control. Figure 11-7 lists all the methods
and properties of this class.

Figure 11-7

Before you can work with the UploadHandler class, you need to create an instance of it. That’s why it
has a public default constructor. Once you have an instance of the class you have to set at least the
VirtualSavePath property; all the other properties are optional. The following table describes the
seven properties of the UploadHandler class:

Property Name Type Default Value Description

AllowedExtensions String String.Empty Gets or sets a regular
expression to use when
checking file extensions.
For example,
^.jpg|.gif$ allows
only JPG or GIF files. If
this property is not set,
all extensions are
allowed.

Extension String String.Empty This read-only property
returns the extension of
the uploaded file.

FileName String String.Empty Gets or sets the name
of the file (without
extension) as it should
be saved.

Table continued on following page

359

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 359

Property Name Type Default Value Description

GenerateDateFolder Boolean False Determines whether
subfolders are created for
the current year and
month to store the file in.
This is useful when you
have a lot of uploaded
files and want to store
them in logical folders.

GenerateUniqueFileName Boolean False Determines whether the
file gets a unique name.
When set to True, the
property FileName is
ignored and the file is
saved with a GUID as
its name.

OverwriteExistingFile Boolean False Determines whether
existing files should be
overwritten when they
already exist.

VirtualSavePath String n/a Gets or sets the virtual
path to the folder where
the uploaded files should
be saved. This property
is updated when
GenerateDateFolder is
True.

Once these properties have been set, your code should call the class’s only public method UploadFile
and pass it an instance of an <asp:FileUpload> control. This method carries out some checks using the
private FileExists and IsExtensionAllowed methods and then either saves the uploaded file to disk
or throws an exception. The following table describes the three methods (other than its constructor) of
the UploadHandler class:

Method Return Type Description

FileExists Boolean Returns True when a file with the same name
already exists.

IsExtensionAllowed Boolean Returns True when the extension of the
uploaded file meets the criteria set in the
AllowedExtensions property.

UploadFile n/a This method is the workhorse of the
UploadHandler class. It performs a number
of checks on extensions, paths, and so on,
and then saves the file to disk or throws an
exception.

360

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 360

You see a lot more of the inner workings of this class in the section “Code and Code Explanation.”

In addition to the Toolkit folder, the App_Code folder contains two helper classes, which are discussed
next.

Helper Classes
The two helper classes for the Greeting Cards application, called FileHandlingEventArgs and
AppConfiguration, have been put in the App_Code folder directly. The reason for this is that they are
used by the web application, and not by the code in the Toolkit. The design of these classes is discussed
next. You see how and where they are used in the section “Code and Code Explanation.”

The FileHandlingEventArgs Class
The four user controls that make up the largest part of the user interface of the application are all capable
of firing an event called ImageFinalized to signal to the application that they’re done with their work.
When they fire this event, they pass up an instance of the FileHandlingEventArgs class that inherits
from the standard System.EventArgs class. The FileHandlingEventArgs has the same behavior as
this EventArgs class, but adds an additional property called FileName, as you can see in Figure 11-8.

Figure 11-8

This FileName property holds the name of the image that the user control has been working with. The
constructor for this class accepts this filename and stores it in a private backing variable that is made
accessible through the public FileName property. You see how this works later when the code for the
user controls is discussed.

The final class in the App_Code folder is AppConfiguration, the configuration class you also saw in
previous chapters.

AppConfiguration
The AppConfiguration class is a simple wrapper with five public properties around application set-
tings keys in the Web.config file. This class is used in some of the user controls in the site to determine
the maximum height or width of an image, the path where the uploaded images should be saved, and
the name and e-mail address used to send out e-mails. Figure 11-9 shows these five properties.

The two Email properties hold the e-mail address and name of the sender of the e-mails that are sent by
the application.

361

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 361

Figure 11-9

The MaxImageHeight and MaxImageWidth properties work together and determine the new maximum
height or width of the image that is uploaded. The user control that uploads and saves the image in the
first step of the Greeting Card generator automatically resizes the image so its dimensions fit between
these two maximum properties. You see how the image is resized later.

The TempImagesFolder property holds the virtual path to a folder in your site where temporary images
are stored. The Web.config file for the application sets this value to ~/Images/Temp, but you can change
that so it points to a different folder.

Now that you have seen the design of the classes in the Toolkit and their methods, it’s time to look at the
actual implementation of these classes and the user interface of the web site. The next section explains
how the web site is set up using a single web page and four user controls and how these controls and the
page interact.

Code and Code Explanation
Although the code in the Toolkit is already very reusable, the entire application has been made even
more generic and reusable by implementing the various actions on the image inside four user controls.
Each of these controls can be used separately in a different application and has no dependencies on the
host page or any of the other user controls.

In the case of the Greeting Cards application, these four controls have been added to a host page located
in the root of the site. This page serves as a controller to orchestrate the actions of the various user con-
trols. In the next section, you see how this host page is able to communicate with the four user controls.
After that, each of the four controls is discussed in more detail separately.

The Host Page
The host page, called Default.aspx, contains a reference to each of these four controls in an
<asp:MultiView> control. The host page is responsible for displaying the right user control at the right
time, allowing the user to sequentially progress through the Greeting Cards application. The code in the
code-behind file takes the user through the following five steps:

362

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 362

1. Select an image and upload it to the server.

2. Optionally rotate or flip the image.

3. Optionally crop the image to a user-defined region of the image.

4. Add text to the image at a user-defined location.

5. Send an e-mail with the image as an embedded object.

The first four steps are carried out by user controls, whereas step 5 takes place in the code-behind of the
host page itself. Figure 11-10 shows these five steps. The outer rectangle represents the host page, and
the smaller inner rectangles represent the four user controls.

Figure 11-10

SelectImage.ascx

1

RotateFlipImage.ascx

AddText.ascx

Send Email

Default.aspx

4

5

CropImage.ascx

2

3

363

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 363

Inside the Controls folder in the root of the web site you find the four user controls mentioned in Figure
11-10. The following table lists each of these controls and describes their purpose:

Control Name Description

SelectImage.ascx Allows a user to select an image from the local hard drive and upload it
to the server where it is stored on disk. The uploaded image is resized
automatically to meet the maximum height and width rules set in the
Web.config file.

RotateFlipImage.ascx This control allows a user to rotate or flip an image. Rotating and
flipping is optional.

PictureCropper.ascx With this control a user can select a portion of an image by cropping the
original image. Cropping is optional.

AddText.ascx This control allows a user to add text to the image at an arbitrary
location. The user is free to choose from a list of font families and sizes
and specify the color of the text.

Inside the host page, these four controls have been added to a View control inside a MultiView like this:

<asp:MultiView ID=”MultiView1” runat=”server” ActiveViewIndex=”0”>
<!-- Other views go here -->
<asp:View ID=”View2” runat=”server”>
<!-- View specific markup goes here -->
<Wrox:SelectImage ID=”SelectImage1” runat=”server” />

</asp:View>
<asp:View ID=”View3” runat=”server”>
<!-- View specific markup goes here -->
<Wrox:RotateFlipImage ID=”RotateFlipImage1” runat=”server” />

</asp:View>
<!-- Other views go here -->

</asp:MultiView>

This code snippet shows two of the user controls in the highlighted lines; the one used to select and upload
an image and the one to rotate or flip the image. Because with a MultiView control only one view can be
active and thus visible at any given time, the host page shows only one user control at a time.

Because the host page is responsible for displaying the user controls in the right order, it has to know
when to load which user control at which time. Because there are no dependencies between the user
controls or between a user control and the host page, the Greeting Cards application uses an event-
driven mechanism to determine when a specific control is done with its work. Each of the controls
defines an event called ImageFinalized of type ImageFinalizedEventHandler:

Public Delegate Sub ImageFinalizedEventHandler(ByVal sender As System.Object, _
ByVal e As FileHandlingEventArgs)

Public Event ImageFinalized As ImageFinalizedEventHandler

364

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 364

Whenever a control is ready, it raises the event by calling RaiseEvent and passing it an instance of
the FileHandlingEventArgs class you saw earlier. This EventArgs class exposes a property called
FileName that holds the location of the image that has been processed by the control.

To see how this works, look in the code-behind for the SelectImage control that you find in the
Controls folder in the root of the site. Near the end of the file, you’ll see the following code, which gets
triggered when the user clicks the Finish button on the control:

Protected Sub btnFinish_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnFinish.Click

RaiseEvent ImageFinalized(Me, New FileHandlingEventArgs(FileName))
End Sub

This raises the event ImageFinalized and passes it a reference to itself using the Me keyword. It also
passes the name of the file that has been uploaded using the public FileName property. Inside the code-
behind for the host page, this event is caught and handled with the following code:

Protected Sub SelectImage1_ImageFinalized(ByVal sender As Object, _
ByVal e As FileHandlingEventArgs) Handles SelectImage1.ImageFinalized

MultiView1.ActiveViewIndex = 2
RotateFlipImage1.FinishButtonText = “Next”
RotateFlipImage1.FileName = e.FileName

End Sub

The first thing this code does is change the ActiveViewIndex of the MultiView control so it displays
the next user control —RotateFlipImage1 in this example. It then sets the FinishButtonText
property of that control to Next. This determines the text that is displayed on the Finish button of the
RotateFlip user control. This is useful if you want to reuse only a few of the user controls in your
application or want to reorder them. All but the last control can then be set up to display Next, and the
last control could have the text Finish on the button. If you only reuse a single user control, you could
set the button text to the action it’s performing, such as Crop or Rotate Image.

The final step in this code is to set the FileName property of the RotateFlipImage1 control equal to the
FileName property of the e argument. As stated earlier, when a control is finished with its work (the user
clicked the Finish button) it raises an event and passes an instance of the FileHandlingEventArgs class
with it. This EventArgs class holds the filename of the finalized image. In the case of the SelectImage
control, the filename is the virtual path to the image that has just been uploaded. This image will then be
the source of the next control so it has an image to work with. By setting the FileName property of the
RotateFlipImage control, that control knows with which image it should start working.

Although this example shows the code for the SelectImage1_ImageFinalized only, all four controls
implement the same mechanism. The code-behind for Default.aspx has handlers for the
ImageFinalized event, which run similar code to pass the filename from control to control and display
the next step in the process.

In addition to the ImageFinalized event, all four user controls have the following properties and
method in common:

365

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 365

Method or Property Name Type Data Type Purpose

FileName Property String Determines the name and
location of the source file
that each control works with.
The source file of a control is
usually retrieved from the
previous control.

TempFileName Property String A filename to store tempo-
rary versions of the images.
Because the SelectImage
control doesn’t need a
temporary image to work
with, it doesn’t have this
property.

FinishButtonText Property String The text displayed on the
Finish button for each
control. To create a wizard-
style application, the text for
most buttons is set to Next.

btnFinish_Click Method n/a Fires when the Finish button
gets clicked. Inside this
event handler, the final
image is updated and an
ImageFinalized event is
raised.

You see how these properties and the method operate when each of the four individual controls are
discussed.

In addition to the ImageFinalized handlers, you’ll find two more methods in the code-behind of
Default.aspx. The first is btnStart_Click, which fires when the user clicks the Start button on the home-
page. The code for this method sets the ActiveViewIndex property of the MultiView to 1 to display the
SelectImage control so a user can select and upload a file.

The second method is fired when the user clicks the btnSendEmail button. The code for this method
sends an e-mail with the image as an embedded object in the message. You see how this works near the
end of this chapter, after the four user controls have been discussed.

Uploading and Resizing Images
In the Greeting Card application, the user control SelectImage.ascx is the first step in the whole pro-
cess, because it allows a user to select an image from the local hard drive and upload it to the web server.
In addition to a number of Label controls that display various error messages and two placeholders that
determine what part of the control is visible, it contains a few important controls that are listed in the fol-
lowing table:

366

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 366

Control Name Control Type Purpose

FileUpload1 FileUpload Allows a user to select a
local image.

btnUpload Button Uploads the selected image
to the server.

RequiredFieldValidator1 RequiredFieldValidator Checks whether a file has
been selected when the
Upload button is clicked.

litFinishButtonText Literal A placeholder in the
instructive text that is
updated with the same text
the Finish button has.

imgUploaded Image Displays the image that the
user uploaded.

btnNewImage Button Allows a user to select a
new image and ignore the
previously uploaded file.

btnFinish Button Moves the user to the next
step of the Greeting Card
application.

You saw earlier that the control has a FinishButtonText property that determines the text on
the Finish button. In the Page_Load event of the user control, this text is also applied to the Literal
litFinishButtonText to synchronize the user instructions (click Next to continue) with the button’s text.

When a file has been selected and the Upload button has been clicked, the code in btnUpload_Click
fires. This method is responsible for handling the uploaded file and displaying an error message in case
of an exception. The method consists of two parts; the first half of the code uploads the file and saves it
to disk. The other half resizes the image to the maximum dimensions specified by the MaxImageHeight
and MaxImageWidth in the AppConfiguration class. Both of these parts are now discussed.

Uploading Files
The following code snippet shows the code that uploads and saves the file:

myUploadHandler = New Toolkit.UploadHandler()
myUploadHandler.GenerateUniqueFileName = True
myUploadHandler.AllowedExtensions = “^.jpg|.gif|.png|.jpeg$”
myUploadHandler.VirtualSavePath = AppConfiguration.TempImagesFolder
Try
myUploadHandler.UploadFile(FileUpload1)

Catch aex As ArgumentException
Select Case aex.ParamName.ToLower()
Case “extension”
lblIllegalExtension.Visible = True

Case “filename”

367

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 367

lblFileName.Visible = True
Case “myfileupload”
lblNoFile.Visible = True

End Select
Catch Ex As Exception
lblErrorMessageUnknownError.Visible = False

End Try

The first thing this code does is create an instance of the UploadHandler class. Notice how the class
name is prefixed with Toolkit— the namespace that the UploadHandler class lives in. As you recall
from earlier in this chapter, this class is responsible for saving an uploaded file to disk. Next, three prop-
erties are set on the UploadHandler object. The first dictates that the uploaded file should get a unique
filename in the form of a GUID. This ensures that the uploaded file isn’t accidentally overwritten by
another file with the same name. Then the AllowedExtensions property is set. This property can con-
tain a regular expression that dictates the allowed extensions for the uploaded file. In the preceding
example, only JPG and GIF files are allowed. The final property determines the path where the uploaded
images are saved, which is retrieved from the AppConfiguration class again.

Next, UploadFile is called, which gets a reference to the FileUpload control defined in the markup of
the SelectImage control. The UploadFile method throws ArgumentException objects when one or
more of the criteria aren’t met, so the code in the Catch block handles these errors and displays a label
with an error message that describes the problem. The UploadFile method is the workhorse of the
UploadHandler class, because it carries out a number of checks, builds up the path and filename where
the file must be saved, and finally saves the uploaded file to disk. It’s a bit too much code to repeat here
completely, but the following code block shows the first part of the method that determines the filename,
extension, and the path where the uploaded file is saved:

If myFileUpload.HasFile Then
If _GenerateUniqueFileName Then
_FileName = Guid.NewGuid().ToString()

Else
If _FileName IsNot String.Empty Then
_FileName = Path.GetFileNameWithoutExtension(myFileUpload.FileName)

End If
End If

_Extension = System.IO.Path.GetExtension(myFileUpload.PostedFile.FileName)

If _VirtualSavePath = String.Empty Then
Throw New ArgumentException(“Cannot save the file without a “ & _

“VirtualSavePath.”, “VirtualSavePath”)
End If
If _GenerateDateFolder Then
_VirtualSavePath &= DateTime.Now.Year.ToString() & _

“/” & DateTime.Now.Month.ToString().PadLeft(2, “0”c)
End If

‘ Other checks go here

‘ File is saved here

End If

368

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 368

It starts off with checking whether a unique ID must be generated for the uploaded filename. The calling
code set this property to True, so in the Greeting Card example the code in the first If block runs and
then _FileName is filled with a GUID. In situations where no external filename has been set and the
class doesn’t need to create a unique filename, the filename is retrieved from the file the user has
uploaded. Then the extension is retrieved from the uploaded filename. The last part of this code block
builds up the virtual path to the upload folder. When no folder has been specified, the code throws an
exception and ends. Otherwise, the path is extended with the current year and month as separate folders
when _GenerateDateFolder is True. This creates a path like 2006\03 under the _VirtualSavePath
folder. This can be useful to segment the uploaded files by year and month.

The UploadFile method repeats similar checks to see if the image can be overwritten and if the exten-
sion of the file is valid. It does the latter with the private function IsExtensionAllowed, which uses a
regular expression to validate the extension:

Private Function IsExtensionAllowed() As Boolean
Dim tempResult As Boolean = True
If _AllowedExtensions IsNot String.Empty Then
Try
tempResult = Regex.IsMatch(_Extension.ToLower, _AllowedExtensions, _

RegexOptions.IgnoreCase)
Catch
tempResult = False

End Try
End If
Return tempResult

End Function

Only when the AllowedExtensions property has been set does the code validate the extension. It uses
the Regex.IsMatch method to check whether the uploaded file matches the extension pattern stored in
_AllowedExtensions.

The remainder of the UploadFile method (not shown here) creates the requested folder and finally
saves the file using the SaveAs method of the ASP.NET FileUpload control. Because these operations
can result in exceptions, the code is wrapped in a Try Catch block. In case an exception occurs, it’s
caught and handled by the code in the SelectImage control that you saw earlier.

Once the file has been uploaded and saved successfully, the second half of the code in btnUpload_
Click inside the SelectImage control fires. This code resizes the image to the maximum size defined in
the Web.confg file.

Resizing Images
Because the Toolkit shields you from the complexity of the code to resize an image, the code in the
SelectImage control is really simple:

FileName = Path.Combine(myUploadHandler.VirtualSavePath, _
myUploadHandler.FileName) & myUploadHandler.Extension

Toolkit.Imaging.ResizeImage(Server.MapPath(FileName), _
AppConfiguration.MaxImageWidth, AppConfiguration.MaxImageHeight)

imgUploaded.ImageUrl = FileName
plcUpload.Visible = False
plcImage.Visible = True

369

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 369

The first line of the code block builds up the full filename by combining the path, the filename, and the
file extension. The second line calls the ResizeImage method of the Imaging class in the Toolkit
namespace. This overloaded version of ResizeImage expects a physical path to the image (that’s why
Server.MapPath is used) and the maximum width and height of the image. After the image has been
resized successfully, the last few lines update the Image control with the new image and switch the visi-
bility of the plcUpload and plcImage placeholder controls. This effectively displays the uploaded and
resized image on the page, and hides the FileUpload control.

To understand how the ResizeImage method works, you need to open the Imaging.vb file from the
Toolkit folder and locate the method with the following signature:

Public Shared Sub ResizeImage(ByVal fileNameIn As String, _
ByVal maxWidth As Integer, ByVal maxHeight As Integer)

This method does nothing more than call another overload that has almost the same signature but
accepts additional fileNameOut and ImageFormat parameters. If you locate that method (to navigate
to it, right-click the method’s name and choose Go To Definition), you’ll find the following code:

Public Shared Sub ResizeImage(ByVal fileNameIn As String, _
ByVal fileNameOut As String, ByVal maxWidth As Integer, _
ByVal maxHeight As Integer, ByVal theImageFormat As ImageFormat)

Dim originalSize As Size = GetImageSize(fileNameIn)
Dim newSize As Size = New Size(0, 0)

Dim resizeFactor As Decimal = System.Math.Max(_
Convert.ToDecimal(Decimal.Divide(originalSize.Height, maxWidth)), _
Convert.ToDecimal(Decimal.Divide(originalSize.Width, maxWidth)))

newSize.Height = Convert.ToInt32(originalSize.Height / resizeFactor)
newSize.Width = Convert.ToInt32(originalSize.Width / resizeFactor)

ResizeImage(fileNameIn, fileNameOut, newSize, theImageFormat)
End Sub

The first thing you may notice is that this method doesn’t actually resize the image; all it does is calcu-
late the new dimensions of the image. First it gets the dimensions of the original image by calling the
helper method GetImageSize. With these dimensions, the resizeFactor is calculated. This is done by
taking the maximum value of the required resize factor for the height and for the width. To understand
how this works, consider the following example. Imagine you upload a file that’s 1000 pixels wide and
600 pixels high. Also imagine that the maximum dimensions for the image in the Web.config file have
been set to 640×480. With these numbers, the factor by which this image should be resized is 1.5625
(1000 divided by 640) for the width and 1.25 (600 divided by 480) for the height. The highest value of
these two factors is 1.562, which means the image should be resized by that factor. To calculate the new
dimensions of the image (stored in the variable newSize) both the height and the width are divided by
resizeFactor. In the end, the newSize will have a width of 640 and a height of 384 pixels.

Once the dimensions are known, the code calls yet another overloaded version of ResizeImage and
passes it the source and target filenames, the newSize variable, and an image type. This version of the
ResizeImage does all the hard work by resizing the image:

370

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 370

Public Shared Sub ResizeImage(ByVal fileNameIn As String, _
ByVal fileNameOut As String, ByVal theSize As Size, _
ByVal theImageFormat As ImageFormat)

Dim mySourceBitmap As Bitmap = Nothing
Dim myTargetBitmap As Bitmap = Nothing
Dim myGraphics As Graphics = Nothing

Try
mySourceBitmap = New Bitmap(fileNameIn)

Dim newWidth As Integer = theSize.Width
Dim newHeight As Integer = theSize.Height

myTargetBitmap = New Bitmap(newWidth, newHeight)

myGraphics = Graphics.FromImage(myTargetBitmap)

myGraphics.InterpolationMode = _
System.Drawing.Drawing2D.InterpolationMode.HighQualityBicubic

myGraphics.DrawImage(mySourceBitmap, New Rectangle(0, 0, newWidth, newHeight))
mySourceBitmap.Dispose()

myTargetBitmap.Save(fileNameOut, theImageFormat)
Catch
Throw

Finally
‘ Clean up objects. Not shown here.

End Try
End Sub

After the variable declaration, the code creates a new bitmap object based on the source image. Then a new
bitmap called myTargetBitmap is created, which gets the dimensions of the Size object that was passed
to this method. On this target bitmap the resized version of the original image will be drawn. Then a new
Graphics object is created. You can see the Graphics object as a virtual canvas and a virtual painter at
the same time. The new Graphics object is created with the FromImage method and is passed the new
and empty bitmap. This bitmap serves as the canvas to paint on. Then the InterpolationMode of the
Graphics object is set. This enumeration defines the algorithm that is used when images are scaled or
rotated. This enumeration has quite a few members, each resulting in a different image quality. In the pre-
ceding code, HighQualityBicubic is chosen because it ensures the best quality of the image.

Then DrawImage is called to paint the original image (stored in mySourceBitmap) at the specified loca-
tion and size on the target bitmap. For this location and size it expects a Rectangle object, which is cre-
ated on the fly in the method call. The Top and Left of the rectangle are set to 0, and the Height and
the Width come from the Size object passed to the ResizeImage method. When DrawImage draws the
bitmap from mySourceBitmap onto its internal bitmap object (myTargetBitmap) it resizes and posi-
tions the source bitmap. In this code example, it places the new bitmap at 0, 0 (the upper-left corner) but
when you have other drawing needs you can choose a different location. For example, when you want
to draw a border around an image, you could specify 10, 10 as the upper-left location. If you also specify
the target bitmap to be 20 pixels higher and wider than the original, you get a nice border of 10 pixels on
all four sides of the image.

371

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 371

The final step is to save the new bitmap using its Save method. However, before that is done, the origi-
nal bitmap is disposed first. When .NET creates a new bitmap based on a file location, it holds on a lock
to that file. So, until you release that lock by calling Dispose, the original file cannot be overwritten. To
ensure that calling code can resize an image that is saved under the original name (effectively overwrit-
ing the original) the source bitmap is disposed before Save is called.

The Finally block eventually cleans up any object that has been created in the Try block.

Back in the SelectImage.ascx control, there is one event you need to look at; the Click event for the
Finalize button:

Protected Sub btnFinish_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnFinish.Click

RaiseEvent ImageFinalized(Me, New FileHandlingEventArgs(FileName))
End Sub

This code raises the event called ImageFinalized and passes the FileName of the image that has just
been uploaded and resized. As soon as the event is raised, the code in Default.aspx catches it with the
following code:

Protected Sub SelectImage1_ImageFinalized(ByVal sender As Object, _
ByVal e As FileHandlingEventArgs) Handles SelectImage1.ImageFinalized

MultiView1.ActiveViewIndex = 2
RotateFlipImage1.FinishButtonText = “Next”
RotateFlipImage1.FileName = e.FileName

End Sub

This code sets up the next user control called RotateFlipImage1, which allows a user to rotate and flip
an image. It sets the FinishButtonText of that control to Next, and it sets the FileName property to
the filename retrieved from the e argument. The FileName property of the RotateFlipImage1 is the
source file this control will work with.

Rotating and Flipping Images
When the FileName property is set by the host page, the RotateFlipImage control (called
RotateFlipImage.ascx in the Controls folder) calls a private method called InitializeControl
(in bold text in the following code), but only the very first time this property is set. This is done to
avoid calling InitializeControl more than once:

Public Property FileName() As String
‘ Get accessor goes here (not shown)

If ViewState(“FileName”) Is Nothing Then
ViewState(“FileName”) = value
InitializeControl()

Else
ViewState(“FileName”) = value

End If
End Property

372

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 372

InitializeControl in turn calls a helper method called GetRotateTypes in the Imaging class of the
Toolkit to get a string array of all the available rotation types:

Public Shared Function GetRotateTypes() As String()
Dim tempResult As String() = [Enum].GetNames(GetType(RotateFlipType))
Array.Sort(tempResult)
Return (tempResult)

End Function

It does this by calling GetNames on the Enum class and passing it the type of RotateFlipType, which is
defined in the .NET System.Drawing namespace. The RotateFlipType enumeration defines rotating
and flip types like Rotate180FlipNone, which rotates an image 180 degrees; RotateNoneFlipX, which
mirrors the image horizontally; and so on. The array that GetNames returns is sorted and then used as
the DataSource for the DropDownList control called lstRotateFlipTypes. When the user chooses
one of the types from the drop-down list and clicks the Rotate button, the code in the code-behind fires:

Dim myRotateFlipType As RotateFlipType = [Enum].Parse(GetType(RotateFlipType), _
lstRotateFlipTypes.SelectedValue)

Imaging.RotateImage(Server.MapPath(FileName), Server.MapPath(TempFileName), _
myRotateFlipType)

HasBeenRotated = True
plcRotate.Visible = False
btnUndo.Visible = True
UpdateImageControl(TempFileName)

This code first parses the chosen RotateFlipType from the SelectedValue of the DropDownList. It
then uses Server.MapPath to translate the virtual path of the FileName property (retrieved from the
SelectImage control and set by Default.aspx) and of the TempFileName property, which is generated
by the code automatically:

Private ReadOnly Property TempFileName() As String
Get
If ViewState(“TempFileName”) Is Nothing Then
ViewState(“TempFileName”) = AppConfiguration.TempImagesFolder & “/” & _

Guid.NewGuid.ToString() & “.jpg”
End If
Return ViewState(“TempFileName”).ToString()

End Get
End Property

Only the very first time this property is accessed, a filename is built up by combining the temp path for
the images, a GUID, and the extension .jpg. On subsequent calls to this property, its value is retrieved
from ViewState. This ensures that the control has the same unique filename available during the con-
trol’s lifetime.

When the paths have been translated to physical paths correctly, they are passed into RotateImage,
which is defined in the Imaging class in the Toolkit and looks like this:

Using myBitmap As New Bitmap(fileNameIn)
myBitmap.RotateFlip(theRotateFlipType)
myBitmap.Save(fileNameOut, ImageFormat.Jpeg)

End Using

373

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 373

This method simply calls the RotateFlip method of the Bitmap class and passes it the specified
RotateFlipType. It then calls Save on the same object to save the changes to disk.

Once the user is done with rotating and flipping the image, she can click the Finish button. When that
button is clicked, the control updates the FileName property with the value from TempFileName
(that now holds the rotated image) but only when the image has actually been rotated. Otherwise, the
FileName property is left as is and passed to the event handler in the calling code. The final line of code
in the method raises the event ImageFinalized:

If HasBeenRotated Then
FileName = TempFileName

End If
RaiseEvent ImageFinalized(Me, New FileHandlingEventArgs(FileName))

The host page has an event handler for this event. Inside this handler, called
RotateFlipImage1_ImageFinalized, the host page now passes the filename up from the
RotateFlip control to the CropImage control, which is discussed next.

Cropping Images
Recall from the introduction of this chapter that the cropping page displays a rectangle that the user can
move around and resize. When the correct portion of the image is selected, the image is cropped with
the click of a button. The rectangle that is drawn on top of the image is a visual cue to the user. When the
actual crop operation is performed, the image is cropped to the area that is visible inside the selection
rectangle.

The entire cropping is handled by the CropImage control, saved as CropImage.ascx in the Controls
folder. The left side of the control displays the image that has been set by the previous RotateFlip con-
trol. At the right side, you see a drop-down list that allows you to change the color of the selection area.
It’s useful to change the color when you have uploaded a dark image, which makes the default color
of black hard to spot. The items in the drop-down list are set in the InitializeControl method
that is called when the FileName property is set for the first time, similar to the code you saw for the
RotateFlip control. Just as with the RotateFlip types, the Imaging class has a useful method that
returns an array of Color objects:

Public Shared Function GetColors(ByVal includeSystemColors As Boolean) As Color()
Dim tempColors As KnownColor() = _

CType([Enum].GetValues(GetType(KnownColor)), KnownColor())
Dim colors As New ArrayList

For loopCount As Integer = 0 To tempColors.Length - 1
If (Not Color.FromKnownColor(tempColors(loopCount)).IsSystemColor _

Or includeSystemColors) And Not _
Color.FromKnownColor(tempColors(loopCount)).Name = “Transparent” Then

colors.Add(Color.FromKnownColor(tempColors(loopCount)))
End If

Next
Return CType(colors.ToArray(GetType(Color)), Color())

End Function

374

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 374

This method uses Enum.GetValues to get an array of KnownColor objects. This array also includes
system colors like ActiveBorder and ButtonFace. Because these colors are defined by the system settings
of the server and the end user has no way to find out what color they represent, they are removed
from the list when the Boolean parameter includeSystemColors is False. This is done by looping
though the array with colors, and adding each valid color to a new ArrayList. At the end of the method,
the ArrayList is converted to an array of Color objects and returned to the calling code where it is used
as the DataSource for the color drop-down.

Below the color drop-down, you see two sets with four button controls each. The first set, displayed in
Figure 11-11, is used to change the location of the cropping area on the image.

Figure 11-11

With the pixels drop-down control you can determine how many pixels the selection area is moved
when one of the buttons is clicked. When you click one of the buttons, the code in the code-behind for
the control recalculates the location of the selection area and then draws a new rectangle on top of the
image. This is done with the following code, which is fired when you click the upward-facing arrow:

Protected Sub btnLocationUp_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnLocationUp.Click

Top -= MoveIncrease
If Top < 0 Then
Top = 0

End If
DrawRectangle()

End Sub

The MoveIncrease property is a simple wrapper around the SelectedValue of the pixel drop-down
list you saw in Figure 11-11. The code then subtracts this increase size from the Top location of the con-
trol. This property is stored in ViewState, just like its counterparts Left, Width, and Height. The code
also checks if the Top property doesn’t exceed the image’s boundaries. In this case, when Top is less than
0, it is set to zero, so the rectangle is displayed at the very top of the image.

The code for the three other buttons for navigation work pretty much the same way in that they increase
or decrease the values for the Top or Left properties.

At the end of the code, DrawRectangle is called. This method is discussed in full detail after the Resize
buttons for the selection area have been discussed.

Figure 11-12 displays the four buttons that are used to control the size of the selection area. The code in
the code-behind is almost identical to that for the navigation buttons, but the size buttons operate on
Width and Height, rather than on the Top and Left properties.

375

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 375

Figure 11-12

Each of the eight event handlers for the navigation and size buttons calls DrawRectangle. This method
creates a new rectangle based on the Top, Left, Height, and Width properties and creates a new
color based on the SelectedValue of the lstPenColor control. These values are then passed to
DrawRectangle in the Imaging class of the Toolkit, which draws a rectangle on top of the image:

Public Shared Sub DrawRectangle(ByVal fileNameIn As String, _
ByVal fileNameOut As String, ByVal theRectangle As Rectangle, _
ByVal myColor As Color)

Dim myGraphics As Graphics = Nothing
Dim myBitmap As Bitmap = Nothing

Try
myBitmap = new Bitmap(fileNameIn)
myGraphics = Graphics.FromImage(myBitmap)

Dim myPen As New Pen(myColor, 1)
myGraphics.SmoothingMode = Drawing2D.SmoothingMode.None
myGraphics.DrawRectangle(myPen, theRectangle)
myPen.Dispose()

myBitmap.Save(fileNameOut, ImageFormat.Jpeg)

Catch ex As Exception
Throw

Finally
If myBitmap IsNot Nothing Then
myBitmap.Dispose()

End If
If myGraphics IsNot Nothing Then
myGraphics.Dispose()

End If
End Try

End Sub

Similar to the resize code you saw earlier, this code creates a new Bitmap and a new Graphics instance.
This Graphics instance stores the Bitmap as its drawing canvas. Then .NET’s DrawRectangle draws
the actual rectangle on top of the image. The size and color of the rectangle are determined by the Pen
object that is passed to DrawRectangle. To keep the rectangle from getting blurred, the SmoothingMode
of the Graphics object is set to SmoothingMode.None, which ensures that the line isn’t anti-aliased.
After the rectangle has been drawn, the Pen object is disposed and the image is saved.

376

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 376

As you can see, the DrawRectangle isn’t performing the cropping. All it does is draw a rectangle on top
of the image. However, the same location and size used to draw the rectangle are used when the user
clicks the Preview button to do the actual cropping:

Protected Sub btnPreview_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnPreview.Click

Toolkit.Imaging.CropImage(Server.MapPath(FileName), _
Server.MapPath(TempFileName), New Rectangle(Left, Top, Width, Height))

‘ Rest of the code is shown later
End Sub

This code calls CropImage, another method defined in the Imaging class. As parameters it gets the
filename of the original image, the filename of the target image (TempFileName), and a Rectangle
object that is constructed on the fly using the Left, Top, Width, and Height properties. The code for
CropImage in the Toolkit looks like this:

Public Shared Sub CropImage(ByVal fileNameIn As String, _
ByVal fileNameOut As String, ByVal theRectangle As Rectangle)

Dim myBitmap As Bitmap = Nothing
Dim myBitmapCropped As Bitmap = Nothing
Dim myGraphics As Graphics = Nothing

Try
myBitmap = New Bitmap(fileNameIn)
myBitmapCropped = New Bitmap(theRectangle.Width, theRectangle.Height)
myGraphics = Graphics.FromImage(myBitmapCropped)

myGraphics.DrawImage(myBitmap, New Rectangle(0, 0, myBitmapCropped.Width, _
myBitmapCropped.Height), theRectangle.Left, theRectangle.Top, _
theRectangle.Width, theRectangle.Height, GraphicsUnit.Pixel)

myBitmap.Dispose()
myBitmapCropped.Save(fileNameOut, ImageFormat.Jpeg)

Catch ex As Exception
Throw

Finally
If myBitmap IsNot Nothing Then
myBitmap.Dispose()

End If
If myBitmapCropped IsNot Nothing Then
myBitmapCropped.Dispose()

End If
If myGraphics IsNot Nothing Then
myGraphics.Dispose()

End If
End Try

End Sub

This code uses the Graphics object to draw the image from the source onto the target. It does this with
.NET’s DrawImage method, which accepts the following parameters:

377

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 377

Parameter Name Parameter Type Description

image Image This parameter contains the source bitmap that holds
the original image. The Bitmap class used in the code
example inherits from Image, so this method happily
accepts it for its image parameter.

destRect Rectangle The rectangle determines where the cropped source
image should be drawn on the new bitmap that was
created. Since the entire new image should be filled,
the Rectangle control is set to be as large as the
target image.

srcX Integer This parameter determines the X coordinate of the
original image from where the image should be
copied to the target image.

srcY Integer This parameter determines the Y coordinate of the
original image from where the image should be
copied to the target image.

srcWidth Integer This parameter determines the width of the area of
the original image that should be copied to the target
image.

srcHeight Integer This parameter determines the height of the area of
the original image that should be copied to the target
image.

srcUnit GraphicsUnit Determines the units of measurement that DrawImage
takes into account. Because the image’s width and
height are specified in pixels, GraphicsUnit.Pixel
is passed.

Because of the large number of parameters, you may have trouble understanding how this all works. To
clarify things, consider Figure 11-13.

Imagine that the source image is 1000 pixels wide and has a height of 700. The outer rectangle in Figure
11-13 depicts that image. The inner rectangle represents the crop area the user has chosen. As you can
see, the crop area is 600×400 pixels, while it has a Left of 180 pixels and a Top of 150. When CropImage
is called, this is what gets passed:

myGraphics.DrawImage(SourceBitmap, New Rectangle(0, 0, 600,400), 180, 150, _
600, 400, GraphicsUnit.Pixel)

What this does is copy a part of the bitmap held in SourceBitmap onto its internal Bitmap (created
off the myBitmapCropped object). With this paint operation, the copied part is placed at 0, 0 and has a
width of 600 and a height of 400 pixels (the dimensions of the target image). The four integer parameters
determine the location and dimensions of the part of the source image that should be copied, which is
the cropping area that the user has selected. The final parameter instructs the DrawImage method to use
pixels for all dimensions and location calculations.

378

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 378

Figure 11-13

When CropImage has completed successfully, control is returned to the CropImage user control where
the <asp:Image> control that displays the cropped image is updated and the visibility of two panels is
switched:

Toolkit.Imaging.CropImage(Server.MapPath(FileName), _
Server.MapPath(TempFileName), New Rectangle(Left, Top, Width, Height))

UpdateImageControl(TempFileName)
plcPreviewImage.Visible = False
plcFinalizeImage.Visible = True

End Sub

This then shows the Finish button for the control (with the text Next) that allows users to continue, and
an Undo button that enables them to restore the original image. The Undo button simply switches back
the visibility of the two placeholders, so the original image with the selection area is shown again.

The Finish button fires the same code as the RotateFlip control does. It assigns FileName the value of
TempFileName (which holds the cropped image) and then uses RaiseEvent again to signal the host
page that it is done with its work. The host page then changes the ActiveViewIndex of the MultiView,
which causes the AddText control to become visible. This control is discussed next.

Adding Text to Images
The AddText.ascx control is responsible for adding the text that the user typed on top of the image. The
user can select a font family and size and a color to style the text that is displayed on the control.

600px

1000px

180px

4
0

0
px

1
5

0
px

7
0

0
px

379

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 379

As you probably guessed by now, this control follows the same pattern as the other controls. It has the
same properties and method — such as FileName and FinishButtonText— as the controls used for
cropping, rotating, and uploading. Because the implementation for these properties and method is
almost identical to that of the other controls, it isn’t discussed here.

However, a number of significant methods and properties are worth looking at. First of all, there’s the
InitializeControl method that fills two DropDownList controls with font families and colors. You
already saw the code that lists the colors in the code for the CropImage control, so the following code
block lists the code for the GetFontFamilies method in the Imaging class in the Toolkit only:

Public Shared Function GetFontFamilies() As FontFamily()
Dim fonts As New ArrayList

For loopCount As Integer = 0 To FontFamily.Families.Length - 1
fonts.Add(FontFamily.Families(loopCount))

Next
Return CType(fonts.ToArray(GetType(FontFamily)), FontFamily())

End Function

The .NET Framework has a very convenient FontFamily class, hosted in the System.Drawing names-
pace that exposes a shared (and read-only) property called Families. This Families property returns
an array of all the FontFamily objects that are present on the computer where the code runs. It’s impor-
tant to understand this code depends on the machine where it is run, because it could mean a big differ-
ence between your local development machine and the final production server. On your local machine
you may have a lot of fonts that are installed by Microsoft Office or by drawing packages such as Adobe
PhotoShop or Corel Draw. However, on a production server, you often find only the default fonts
installed by Windows, which is somewhere around 20 to 30 fonts.

The code loops through this array and adds each FontFamily to an ArrayList because this class has a
very convenient Add method that allows you to add objects to it. At the end, the ArrayList is casted
back to an array of FontFamily objects. Without the ArrayList, you’d need to define a new array of
type FontFamily, and then manually resize and add the elements to it. The ArrayList class shields
you from this hassle so it’s a lot easier to use. It’s a bit slower than working with regular arrays, but its
added usefulness is well worth the performance hit.

The array of FontFamily objects is returned from the method and then set as the DataSource for the
font drop-down list:

lstFontNames.DataSource = Toolkit.Imaging.GetFontFamilies()
lstFontNames.DataTextField = “Name”
lstFontNames.DataValueField = “Name”
lstFontNames.DataBind()

The FontFamily object has a Name property that is used for both DataTextField and
DataValueField.

When the user selects a new font from the lstFontNames control, it fires its SelectedIndexChanged
event. Inside the event handler for that event, a drop-down list with font styles is created. The code that
builds up the list looks like this:

380

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 380

lstFontStyles.Items.Clear()
lstFontStyles.Visible = True
Dim styles As FontStyle() = New FontStyle(3) {FontStyle.Regular, _

FontStyle.Bold, FontStyle.Italic, FontStyle.Bold Or FontStyle.Italic}
Dim family As FontFamily = New FontFamily(lstFontNames.SelectedValue)
For Each style As FontStyle In styles
If family.IsStyleAvailable(style) Then
lstFontStyles.Items.Add(style.ToString())

End If
Next

This code creates a new array of FontStyle objects and adds four new Style items to it in its initializer
code. Notice the use of FontStyle.Bold Or FontStyle.Italic to indicate a font style that has both
a bold and an italic typeface at the same time. The code then checks if the selected font supports each of
the four font styles by calling IsStyleAvailable. If the style is available it’s added to the drop-down
list. Otherwise, it’s simply ignored.

The next important thing to look at is how the control keeps track of where the user has clicked so it
knows where to place the text. This consists of two parts. First, two private properties called X and Y
store their value in ViewState so it’s persisted across postbacks. These properties get a value when the
user clicks the image with the following code:

Protected Sub ImageButton1_Click(ByVal sender As Object, ByVal e As _
System.Web.UI.ImageClickEventArgs) Handles ImageButton1.Click

X = e.X
Y = e.Y
AddText()
cellControls.Visible = True
plcAddText.Visible = True

End Sub

The ImageClickEventArgs instance exposes an X and a Y property that hold the location where the
user clicked the image at the client. This is standard behavior implemented in the ImageButton class.
When these properties have been set, AddText is called (discussed next) and the visibility of the place-
holder and the table cell with the server controls is switched. This then displays the drop-downs with
the font-style, size, and color.

The first time the user clicks the image no text is added to the image, because the text box doesn’t con-
tain any text yet. However, on subsequent clicks on the image, the page reloads and the text is moved to
the location where the user clicked last. To see how the text is added to the image, look at the AddText
method in the user control first:

Private Sub AddText()
If txtTextToAdd.Text.Length > 0 AndAlso lstFontNames.SelectedIndex > 0 Then
Dim aFont As Font = New Font(lstFontNames.SelectedValue, _

Convert.ToSingle(lstFontSizes.SelectedValue), _
CType(FontStyle.Parse(GetType(FontStyle), _
lstFontStyles.SelectedValue), FontStyle))

Dim myColor As Color = Color.FromName(lstKnownColors.SelectedValue)
Dim textLocation As Point = New Point(X, Y)

Toolkit.Imaging.AddTextToImage(Server.MapPath(FileName), _

381

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 381

Server.MapPath(TempFileName), aFont, myColor, _
textLocation, txtTextToAdd.Text)

‘ Rest of the code is shown later
End If

End Sub

The first thing this code does is create a new Font instance. The FamilyName that is passed to the Font
constructor is retrieved from the drop-down lstFontNames, the size from lstFontSize, and the
style is retrieved by casting the SelectedValue of the lstFontStyles list back to a Style object.
Effectively, this creates a font with the user-specified font family and size, which is then used to draw on
the image.

Next, a new Color object is created, using Color.FromName, which accepts the name of a known color.
The final object that is created is a Point object to which the X and Y values are passed in its constructor.
This Point object determines the upper-left corner of the text that is about to be added.

Then AddTextToImage in the Toolkit is called to add the text to the image. The Font, Color, and Point
objects that have been created are passed to it, together with the filename and the text that should be
added:

Public Shared Sub AddTextToImage(ByVal fileNameIn As String, _
ByVal fileNameOut As String, ByVal myFont As Font, ByVal fontColor As Color, _
ByVal textLocation As Point, ByVal textToAdd As String)

Dim myGraphics As Graphics = Nothing
Dim myBitmap As Bitmap = Nothing

Try
myBitmap = new Bitmap(fileNameIn)

myGraphics = Graphics.FromImage(myBitmap)

Dim myStringFormat As StringFormat = New StringFormat
myStringFormat.Alignment = StringAlignment.Near

myGraphics.TextRenderingHint = Drawing.Text.TextRenderingHint.AntiAlias

Dim myBrush As SolidBrush = New SolidBrush(fontColor)
myGraphics.DrawString(textToAdd, myFont, myBrush, _

New Point(textLocation.X, textLocation.Y), myStringFormat)
myBitmap.Save(fileNameOut, ImageFormat.Jpeg)

Catch ex As Exception
Throw

Finally
If myGraphics IsNot Nothing Then
myGraphics.Dispose()

End If
If myBitmap IsNot Nothing Then
myBitmap.Dispose()

End If
End Try

382

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 382

The first part of the code should look very similar, because it’s the same code used by the other imaging
methods. It creates a new Bitmap object from the filename passed to this method and then creates a new
Graphics object based on that bitmap.

Next, a new StringFormat object is created and its Alignment property is set. This property deter-
mines in what direction the text is aligned. The enumeration has three options: Near, Center, and Far.
In a Left to Right (LTR) language (most Western languages), Near equals left, whereas in Right to Left
languages, such as Arabic, Near equals right. With the Near setting in a LTR language, the Point object
passed to this method determines the upper-left corner of the text. With a setting of Far, it defines the
upper-right corner of the text, so the text is placed to the left of the point chosen. Because the entire site
is in English, it’s safe to assume that Near is a sensible default. When users click the image to determine
the location of the text, they’ll most likely expect they have to indicate the upper-left corner of the text.

The next line of code sets the TextRenderingHint to AntiAlias. This causes the text placed on the
image to be slightly anti-aliased, causing a smoother transition to the background. Whether you like
the effect of this setting depends largely on personal preferences. If you don’t like the result of the
AntiAlias setting, try one of the other options such as ClearTypeGridFit or SingleBitPerPixel.
Look at the TextRenderingHint enumeration in the MSDN documentation for more information.

Then a new Brush object is created. In the code example, a new SolidBrush is created that fills the let-
ters drawn on the image with a solid color. However, you’re not limited to solid colors. Instead of a
SolidBrush, you could create a HatchBrush or a LinearGradientBrush or another brush that inher-
its from System.Drawing.Brush. For example, the following Brush draws the letters on the image
with a light gray background and a black brick pattern:

Dim myBrush As Drawing2D.HatchBrush = New Drawing2D.HatchBrush(_
Drawing2D.HatchStyle.DiagonalBrick, Color.Black, Color.LightGray)

This results in the text on the image shown in Figure 11-14.

Figure 11-14

A lot more is possible with brushes and text in GDI+ than you have just seen here. For more information
about brushes, look up the System.Drawing.Brush class in the MSDN documentation to see what

383

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 383

classes inherit from it that you can use. Look at the HatchStyle enumeration for more information
about the 54 available hatch patterns.

With the Graphics, the StringFormat, and the Brush set up, the final step is to call DrawString to
draw the text on top of the image:

myGraphics.DrawString(textToAdd, myFont, myBrush, _
New Point(textLocation.X, textLocation.Y), myStringFormat)

With the previous description, this should now be easy to understand. The parameter textToAdd holds
the text that must be added to the image, and the other parameters determine the font, the brush used to
draw the text, the X and Y coordinates of the text relative to the image, and the text alignment, respectively.

The final line in the Try block saves the image to disk, the code in the Finally block cleans up the
objects created in the Try block, and then control is returned to the calling code.

Back in the AddText.ascx user control, the final code that runs in the AddText method updates the image
held in the ImageButton1 control and then enables the Finish button:

UpdateImageControl(TempFileName)
btnFinish.Visible = True

Just as with the RotateFlip control, the Undo button simply assigns the ImageButton1 control the
original image. This way, the old image is restored and the temporary image is overwritten automati-
cally next time the AddText button or the image itself gets clicked.

The AddText control concludes the discussion of the four user controls that make up the Greeting Card
application. In this section, you saw how to upload and resize images, how to rotate and crop them, and
how to add text to images.

The final step performed by the Greeting Card application is to send out the generated image together
with a personal message from the user as an e-mail. This is done by the host page itself with code that is
discussed next.

Sending E-Mail with Embedded Images
The controls and the code that allow users to send the image together with a personal message to their
friends have been placed in the host page, Default.aspx. The last View in the MultiView control holds a
simple Image control, and three text boxes for the user’s name, the recipient’s e-mail address, and the
personal greeting message. When all three have been filled in, a button called btnSendEmail is respon-
sible for sending the image and the message as an e-mail.

When sending images through e-mail, you basically have two options. You can send an HTML-formatted
message that holds a normal HTML tag. This tag should point back to an image that
is stored somewhere on your web server and that is accessible over the Internet. A disadvantage of this
method is that modern e-mail programs like Microsoft Outlook often block these images to protect
the privacy of the user. Although for an end-user it’s very easy to unblock them so the images can be
viewed, the message doesn’t look as intended when the user first receives it. There’s also the chance that
the user doesn’t even unblock the images, because he doesn’t fully trust the message or the sender.

384

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 384

With the second option, you can embed the image inside the HTML body of the message, so it gets sent
to the user together with the actual e-mail message. This ensures the user is able to see the images with-
out a need to download them from a web server after the message has arrived.

The Greeting Card application sends the image that has been uploaded and altered as an embedded
image through e-mail with the following code:

Protected Sub btnSendEmail_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnSendEmail.Click

Dim emailFromAddress As String = AppConfiguration.EmailFromAddress
Dim emailFromName As String = AppConfiguration.EmailFromName
Dim emailToAddress As String = txtEmailAddress.Text
Dim theSubject As String = txtYourName.Text & “ sent you a Greeting Card”

Dim theMailBody As String = String.Format(“{0} sent you a “ & _
“greeting card.

” & _
“

<h3>Personal message from {0}</h3>{1}”, _
txtYourName.Text, txtYourMessage.Text)

Dim myMailMessage As New MailMessage()
myMailMessage.To.Add(emailToAddress)
myMailMessage.From = New MailAddress(emailFromAddress, emailFromName)
myMailMessage.Subject = theSubject

Dim myAlternateView As AlternateView = _
AlternateView.CreateAlternateViewFromString(theMailBody, _
System.Text.Encoding.ASCII, MediaTypeNames.Text.Html)

Dim myLinkedResource As LinkedResource = _
New LinkedResource(Server.MapPath(AddText1.FileName))

myLinkedResource.ContentId = theContentId
myLinkedResource.ContentType.Name = Server.MapPath(AddText1.FileName)

myAlternateView.LinkedResources.Add(myLinkedResource)
myMailMessage.AlternateViews.Add(myAlternateView)
myMailMessage.IsBodyHtml = True
Try
Dim mySmtpClient As New SmtpClient()
mySmtpClient.Send(myMailMessage)
plcMailSent.Visible = True
plcSendMail.Visible = False

Catch ex As Exception
lblErrorMessage.Visible = True
plcMailSent.Visible = True
plcSendMail.Visible = False

End Try
End Sub

First a number of variables are declared and assigned a value. These variables hold the To and From
address information (retrieved from the AppConfiguration class) and the subject. Then the mail body
is built using String.Format, which replaces the placeholders in the text ({0}, {1}, and so on) with
the actual values passed in the parameter list. Notice the use of the embedded tag. It has a src
attribute that points to cid:imgGreetingCard. This ID, imgGreetingCard, is used later in the code
again when the ContentId of the LinkedResource is set.

385

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 385

Then a new MailMessage is created and the To and From addresses and the Subject are set. In .NET
1.x, these addresses were simple String properties so you could assign to them directly. However, in
.NET 2.0 the To address is now a collection of MailAddresses, so you should use the Add method to
add a new MailAddress. The From address property can hold a single MailAddress object, which is
set with New MailAddress(emailFromAddress, emailFromName).

The next two blocks of code create an AlternateView and a LinkedResource object. The
AlternateView is normally used to send an alternate version of an e-mail message. For example, when
you send out an HTML-formatted mailing, it’s a good idea to send the plain text version of that message
as an AlternateView. Users with e-mail programs that are not capable of displaying formatted HTML
e-mails can then still see the plain text version. In the preceding code, the AlternateView is used to
create an HTML body with an embedded image. This AlternateView takes precedence over the normal
Body property of the message on e-mail packages that can display HTML. The AlternateView is cre-
ated by calling CreateAlternateViewFromString, which accepts the message body as a string.

The LinkedResource class is then used to embed the image in the mail body. The constructor of this class
expects a filename that points to a file on local disk, so Server.MapPath is used to translate the virtual
path held in AddText1.FileName to a physical path. The next line of code sets the unique ContentId of
the myLinkedResource object. This ContentId has a direct mapping to the cid:imgGreetingCard con-
struct that was used as the src attribute for the image. When the e-mail message is viewed, the e-mail
application replaces the src attribute with the path to the image. Where this path points to depends on the
e-mail application you’re using.

Once the LinkedResource object is ready, it’s added to the LinkedResources property of the
AlternateView using the Add method. The AlternateView is then added to the AlternateViews
property of the MailMessage.

The final piece of the code sends the mail message using a new SmtpClient instance. This is identical to
the other e-mail code you have seen in previous chapters.

When an error occurs while sending the message, the code in the Catch block displays an error message
describing a possible cause for the problem.

The discussion of sending e-mail with an embedded image concludes the “Code and Code Explanation”
section. Not every bit of code in the entire application has been discussed, but instead you have seen the
most important concepts, classes, and methods. The remainder of the code in the application is either
very straightforward or very similar to the code you have seen so far, so you should be able to apply the
knowledge gained in this chapter to that code.

Now that you have seen how to use the Greeting Card application and how it works, you’re ready to
install the application so you can play around with the code. The next section guides you through the
process of installing the application.

Setting up the Greeting Card Application
Setting up the Greeting Card application is even easier than some of the applications you saw in the pre-
vious chapters. Because the Greeting Card application doesn’t use a database, there is no need to config-
ure or change connection strings.

386

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 386

However, you need to change the security settings of your hard drive so the web application can write
the temporary images to a folder under the web root. These settings are discussed after the next two sec-
tions that describe installing the application using the supplied installer or through a manual process.

Using the Installer
The companion CD and the code download come with an automatic installation application in the form
of a Microsoft MSI package. To install the application using this MSI file, open the folder Chapter 11 -
Greeting Cards\Installer on the CD-ROM or from the downloaded zip file.

Next, double-click setup.exe and keep clicking Next until the application is installed completely. Finally,
click Close to dismiss the installation wizard.

Now that the application is installed, you need to tweak some security settings. Refer to the section
“Configuring the Application” that follows directly after the next section that describes manual
installation.

Manual Installation
Manual installation is probably just as easy as installing the application with the supplied installer. For a
manual installation, all you need to do is extract the contents of the supplied zip file to a folder on your
hard drive. To do this, open the folder Chapter 11 - Greeting Cards\Source on the CD-ROM or from the
zip file you downloaded from www.wrox.com. Next, open the zip file Chapter 11 - Greeting Cards.zip
and extract its contents to any folder you want (for example, C:\Projects). Make sure you extract the
file while maintaining the directory structure. How this option is called depends on your extracting util-
ity, but you should look for a feature called Use Folder Names or something similar to that. In the end,
you should end up with a folder like C:\Projects\GreetingCards that in turn contains a few files
and folders.

To view and test the code, open Visual Studio Web Developer Express edition and choose File➪Open➪

Web Site. Make sure that File System is selected in the left-hand pane and then browse to the folder
where you just extracted the contents of the zip file. Select the folder and then choose Open. Visual Web
Developer will load the files and folders in the folder you selected, so you can look at the source for the
Greeting Cards application.

With the extraction done, the final step is to configure the security settings for the application. This step
is discussed next.

Configuring the Application
Configuring the Greeting Cards application is straightforward and easy. All you need to do is change
security settings so the application can write to the temporary folder and configure the mail server. The
security settings are discussed first, followed by the mail server.

Configuring Security Settings
The Greeting Cards application needs a place to store the temporary files that are uploaded, created, and
saved by the various methods in the Toolkit. To make it easy to change where these files are stored, the
application uses a single application setting to denote this temporary path. By default, this folder is a

387

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 387

Temp folder inside the Images folder of the application as is shown by the following code from the
Web.config file:

<add key=”MaxImageHeight” value=”480”/>
<add key=”TempImagesFolder” value=”~/Images/Temp”/>

</appSettings>

To allow the application to write to this folder, you’ll need to change the security settings for the account
that the web server uses. If you’re using the integrated Developer Web Server that comes with Visual
Web Developer, this account is your own account that you use to log on to your machine. If you’re run-
ning the site under IIS, the account is called ASPNET on Windows 2000 and Windows XP or Network
Service on Windows Server 2003. To change the security settings, follow these steps:

1. Open a Windows Explorer and locate the Images folder of your application. If you used the
installer, this path is C:\Inetpub\wwwroot\GreetingCards\Images by default. If you did a
manual install and followed the instructions, the path is C:\Projects\GreetingCards\Images.

2. Inside the Images folder, right-click the Temp folder (if you don’t see the folder, you can create a
new folder called Temp first), choose Properties, and click the Security tab. The dialog in Figure
11-15 appears.

❑ If you don’t see a Security tab, close the dialog and then choose Tools➪Folder Options
in Windows Explorer. Then switch to the View tab and scroll all the way to the bottom
of the Advanced settings list (see Figure 11-16). Make sure that Use Simple File Sharing
(Recommended) is not checked.

❑ Click OK to close the dialog and open the Properties for the Temp folder again.

Figure 11-15

388

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 388

Figure 11-16

3. Depending on your system and configuration, you may have more or fewer users listed in the
Group or User Names list. Click the Add button to add the user account described in the intro-
duction of this section. You should either add your own account or the ASPNET or Network
Service account. When you have typed the account name, click OK to add it to the list. It should
now be visible in the list with Group or User Names that you saw in Figure 11-15.

4. Next, in the Group or User Names list, click the account you just added and then in the
Permissions list at the bottom half of the screen, make sure that at least Modify, Read, and Write
are selected. As soon as you click Modify, some of the other options are automatically selected
for you.

5. Click OK to dismiss the Security dialog. You should now be able to run your application and
create images with the Greeting Card application. If you get an error, make sure you added the
right account for the right folder, and that you selected the right permissions.

Configuring the Mail Server
Because the application sends out e-mail, you need to configure the name of your outgoing mail server
in the Web.config file. To change that setting now, open that file and scroll all the way down to the bot-
tom. You’ll see the following <mailSettings> node:

<system.net>
<mailSettings>
<smtp deliveryMethod=”Network”>
<network host=”smtp.YourProvider.Com” port=”25”/>

</smtp>

389

Greeting Cards

14_749516 ch11.qxp 2/10/06 9:20 PM Page 389

</mailSettings>
</system.net>

</configuration>

Change the host attribute of the <network> node to the name of the server you use for outgoing mail.
If your mail server supports authentication, you can set the userName and password properties of this
node as well.

With this last modification, the application is ready to run. Either browse to http://localhost/
GreetingCards when you installed the application with the supplied installer or press F5 in Visual Web
Developer to start the application.

If you’re feeling adventurous, head to this book’s download page at www.wrox.com to find a list of pos-
sible enhancements to the Greeting Cards application and the Toolkit. You’ll learn how to extend the
Toolkit by adding support for drop shadows on the text on the images. You’ll also learn how to add one
image to another so you can display your company’s logo on each image that gets uploaded in the
Greeting Cards application.

Summary
This chapter covered a lot of ground on working with images through the GDI+ library. Although GDI+
is a very large subject, you have seen how to perform basic imaging tasks, such as resizing, rotating, crop-
ping, and adding text to images. These basic tasks should create a solid basis on which you can build to
increase your imaging skills in .NET applications. To recap, you have seen how to do the following:

❑ Use the Greeting Card application to upload and alter a custom image that can be sent by
e-mail.

❑ Use the UploadHandler class to allow a user to upload files from a local computer to the web
server. This UploadHandler is not limited to images alone; it can also handle other kinds of
documents.

❑ Use the .NET System.Drawing namespace to perform operations on images, such as rotating,
cropping, and resizing.

❑ Create a reusable framework of user controls that split up a more complex application into
smaller pieces that can be reused in other applications separately.

❑ Create a reusable toolkit with code that can be used in many applications. By creating a DLL
from the code in the Toolkit folder, you can create a reusable binary file that can be incorporated
in other applications very easily.

Toward the end of the chapter, you saw how to install the Greeting Cards application, either with an
automated installer or manually. The automated procedure is useful if you want to get the application
up and running on a production server in no time. The manual process is useful if you want to look at
the code and make modifications to it.

390

Chapter 11

14_749516 ch11.qxp 2/10/06 9:20 PM Page 390

12
The Bug Base

If you have ever done any web or other software development before, it’s likely that the applications
you wrote contained bugs. No matter how good a programmer you are, it’s almost impossible to
write an application that does not contain a single bug. Some bugs are caused by logic or coding
errors and some are the result of a difference between the expectations of the project’s client and the
programmer. Yet other bugs may not be discovered until you actually start using the application. For
example, usability or performance issues are often discovered only once the end-users get hold of the
web site or application. Somehow, you need to keep track of those bugs, so they can be fixed in a
next release or service update.

If you’re a one-man development shop, you might be doing all your bug-tracking using sticky notes on
your monitor with text such as “Fix security bug in login module; don’t allow access to just anyone.”
But once your application starts to grow, or you work in a team of developers, this is no longer a
viable solution. If you’re working for a large software development company, you may be working
with advanced bug tracking tools like the Work Item Tracking feature from the new Microsoft Visual
Studio 2005 Team System Edition (http://msdn.microsoft.com/vstudio/teamsystem), or tools
like Bugzilla (www.bugzilla.org) or SourceGear’s Dragnet (www.sourcegear.com/dragnet).
However, these types of applications often cost a lot of money, or may require considerable amounts
of time, knowledge, and resources to set up and maintain.

The Bug Base introduced in this chapter is positioned right in between the sticky notes on your
monitor and an advanced bug tracking application. The Bug Base allows you and your team
members to collaboratively file, change, and report on bugs through a web interface. The Bug Base
can be installed on a server connected to the local network or the Internet, so it can be reached from
any convenient location. It uses a role-based security mechanism, allowing you to determine who
in your team can perform which operation. The member accounts and role settings and all other
application settings are configurable within the web application itself so you can change them
anywhere, anytime.

The first section of this chapter briefly guides you though the application, showing you the main
screens and functionality. The section that follows digs into the design of the Bug Base. It describes
the classes used in the application and how they interact. The section “Code and Code Explanation”
analyzes all of the important files used in the application. If you want to know how to set up and
use the Bug Base, you’ll find installation instructions in the section “Setting up the Bug Base” later
in this chapter.

15_749516 ch12.qxp 2/10/06 9:21 PM Page 391

Using the Bug Base
The Bug Base application allows you to carry out four important tasks: filing bugs, changing bugs,
reporting about bugs, and application maintenance. The role-based security mechanism implemented in
the Bug Base grants access to each of these features to the roles defined in the system. Each user should
be assigned to at least one role so they can log in and perform one of these tasks.

The database that comes with this chapter’s code (available for download at www.wrox.com) has five
member accounts already defined, one for each of the four roles in the application and a super user:

Username Password Description
(case sensitive)

Tester Tester123# A tester can only file new bugs, change his or her
own bugs, or add comments to existing bugs.

Developer Developer123# A developer can perform the same actions as a
tester, but in addition a developer can also change
existing bugs and change their status.

Manager Manager123# A manager has the same rights as a developer,
but can also use the reporting functionality.

Administrator Administrator123# An administrator has the same permissions a
tester has. However, an administrator can also
access the maintenance section to manage appli-
cations, features, and members.

SuperUser SuperUser123# The super user has been assigned to each of the
four roles. This allows you to view the functionality
for all roles without constantly having to log in
and out. In normal operations, you wouldn’t use
this account.

Once you’re logged in, you see the homepage appear (shown in Figure 12-1), which displays a welcome
message and the main menu that appears at the top of each page.

Figure 12-1

392

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 392

On this screen you see the main menu, right below the logo. This menu has four menu items: Bugs,
Reporting, Maintenance, and Help. It also has two icons on the sides that take you back to the homepage
(the home icon on the left) and that display the sitemap (the icon on the right). Depending on the roles
you are assigned to, some menu items are invisible.

To file a new bug, choose File New Bug from the main Bugs menu as shown in Figure 12-2.

Figure 12-2

Before you can file a bug, you need to select an active application to work with, so you’re taken to the
SwitchApplication.aspx page first. This page shows a simple drop-down list with the available applica-
tions and an Apply button. Choose any application from the drop-down list and click the button. The
page depicted in Figure 12-3 appears.

At the upper-right corner of the page in Figure 12-3 you see how you’re logged in (as a Tester in this
example), which roles you’re assigned to (Tester), and which application you’re working with (Instant
Results - BugBase). The rest of the page allows you to enter information about a bug. The Feature of a
bug describes the section of the application in which the bug occurs. Features are application-specific
and are manageable in the Maintenance section described later. The Reproducibility of the bug indicates
if and how often the bug is reproducible. This can be important for developers to know when they try to
reproduce the bug and find the problem. The Frequency describes the scope of the bug by asking how
many users will encounter the bug. With the Severity drop-down the bug filer can indicate the impact of
the bug, ranging from a simple spelling mistake to loss of data and application crashes.

After you make valid selections in each of the drop-downs, you need to type a title and a description of
the bug. The text area has been filled with a short template for the bug report, making it easier for users
to describe the problem in a detailed manner.

Once you click the Insert bug button you see the Bug List page, as shown in Figure 12-4.

393

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 393

Figure 12-3

Figure 12-4
394

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 394

You can limit the list to Active or Inactive bugs using the drop-down menu to the top-left of the bug list.
Inactive bugs are bugs that no longer need attention or work, such as Fixed and Deferred bugs. The
Reporting and Search pages that are discussed later allow you to refine the list with bugs even further,
by searching for only Deferred or Fixed bugs, for example. In the Maintenance section you can select
which status items of a bug determine whether or not the bug gets closed.

If you click the Edit button for a bug you get a screen similar to the File New Bug window (see Figure
12-5). This time two new drop-downs have appeared, allowing you to change the current status for the
bug from New to another appropriate status and to change the bug’s priority. The Priority drop-down
list displays the numbers 1 through 5, where 1 means a bug that needs to be fixed right away, and 5 indi-
cates a less important bug. The Status drop-down holds items like Open, Fixed, and Deferred.

Figure 12-5

When you select Search Bugs from the ever-present main Bugs menu (shown in Figure 12-2) you can
search for specific bugs in the currently selected application. With the item Switch Application on that
same menu you can select another application to work with.

The Reports item under the main menu item Reporting allows you to generate reports about all bugs in
the application regardless their status or application they are filed against. This menu is available only to
members in the Manager role.

Under the main menu item Maintenance you’ll find various menu items that allow you to change applica-
tion settings. You can change and create applications and features for those applications. You can also
change the items that appear in the drop-downs for Status, Frequency, Reproducibility, and Severity. You’ll
find the latter three under the Other Bug Properties menu, which is also a sub-menu item of the main
Maintenance menu, shown in Figure 12-2. Figure 12-6 shows a list of all the Frequency Items in the system
with the first one being edited:

395

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 395

Figure 12-6

To change the Reproducibility and Severity, choose the appropriate item from the drop-down list on the
Bug Properties Maintenance page shown in Figure 12-6.

The final page in the Maintenance section allows you to assign Members to roles and applications. This
way, you have fine control over which member is allowed to do what in the Bug Base.

At the very right of the main menu you’ll see the Help menu and a site map icon. The site map icon
takes you to the site map page, and you can get help about the Bug Base with the Help menu.

Design of the Bug Base
The Bug Base is designed as a three-layered architecture, which means that presentation, business logic,
and data access are each placed in different layers or tiers. As is often the case with ASP.NET applica-
tions, the presentation layer consists of a number of .aspx pages and .ascx user controls that use
ASP.NET server controls. These pages talk to classes defined in the business layer that in turn talk to the
data access layer to get information in and from the database.

The new code model of ASP.NET 2.0 makes it easy to separate the business and data access logic from the
presentation tier with the introduction of the App_Code folder. Any code placed in this folder is automati-
cally compiled and available to all your other files in your application, including .aspx pages and other
code files. If you’re using the full version of Visual Studio 2005 (for example, the Standard or Team System
edition) you can move this code to a separate Class Library project, which you can then include in your

396

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 396

web project. This allows for even further abstraction of the code and promotes reuse. However, for many
applications this new code folder is all you need to create well-designed applications.

The remainder of this section discusses the business layer and the data access layer. The presentation
layer is discussed in the section “Code and Code Explanation.”

The Business Layer
The business layer of the Bug Base is located in the BusinessLogic folder inside the App_Code folder in
the root of the application. It consists of eight classes and one enumeration, each of which is discussed in
detail in the next section.

Bug
The Bug class, shown in Figure 12-7 and located in Bug.vb in the BusinessLogic folder, is the main entity
in the application. It represents the bug that is filed through the web interface and stored in the database.

Figure 12-7

The Bug class exposes only properties; it has no behavior in terms of methods, other than two construc-
tors. All actions you can perform on a bug, such as filing, changing, and searching lists of bugs, are car-
ried out by the BugManager class.

The Bug class has the following properties:

Property Type Description

Application NameValue A NameValue object holding the Id and the
Description for the application the bug is filed
against.

CreatedDateAndTime DateTime The date and time the bug was filed.

397

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 397

Property Type Description

CreateMemberId Guid The unique ID of the user who filed the bug.

Title String A short description of the bug, used to quickly
identify bugs.

Description String The full description of the bug, possibly including
a detailed set of instructions to reproduce the
behavior and describe the problem.

Feature NameValue A NameValue object holding the Id and the
Description for the feature of the application the
bug is filed against.

Frequency NameValue The Frequency describes how often a bug occurs
and how many users are likely to run into it.

Id Integer Each bug is represented by a unique ID. The ID is
automatically generated by the Bug table in the
database whenever a new bug is inserted.

Priority Integer The Priority of a bug often determines the order
in which bugs should be fixed.

Reproducibility NameValue The Reproducibility describes if and how often
the bug can be reproduced.

Severity NameValue The Severity describes the impact of a bug,
ranging from usability issues to loss of data and
application crashes.

Status NameValue The Status indicates the current state of the bug.
A status in turn can determine if the bug should
be treated as closed. Refer to the Status table in the
database for a full list of all the Status items.

UpdatedDateAndTime DateTime The date and time the bug was last updated.

UpdateMemberId Guid The unique ID of the user who last updated the bug.

The Bug class also has two constructors:

Property Description

New () Creates a new Bug object with all properties set to their
default values.

New (ByVal id As Integer) Creates a new Bug object with most properties set to their
default values. The id that is passed to the constructor is set
as the Id of the bug.

Because the Bug class has only properties, it cannot perform any actions, such as saving itself in the
database. Instead, these actions are carried out by the BugManager class.

398

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 398

BugManager
The BugManager class (see Figure 12-8) is responsible for all actions on bugs. It has methods to insert
new and change existing bugs and to retrieve lists of bugs that match specific search criteria. The
BugManager class exposes two read-only properties called Count and MemberId. The Count property
returns the number of bugs currently held by the BugManager in the private field _theBugList. The
MemberId property contains the current member’s ID and is used to check access rights in the business
and data access layers.

Figure 12-8

The BugManager class also has the following methods:

Method Return Type Description

InsertUpdateBug Integer Saves a fully populated Bug object. It does this by
(ByVal theBug As Bug) calling InsertUpdateBug on the BugManagerDB

class and passing it the instance of the bug. The
Integer returned from this method is the new or
current ID of the bug in the database.

GetBug (ByVal Bug Retrieves a bug based on the ID passed to this
id As Integer) method. Returns Nothing when the bug could not

be found or the user doesn’t have permission to
view it.

GetBugList List(Of Bug) Retrieves a list of bugs optionally based on search
(+ one additional criteria and sorted on one of the bug’s properties.
overload) The list that is returned is actually a strongly typed

list of bugs, using the new generics feature of the
.NET Framework. Each of the two overloads is
discussed in greater detail in the section “Code and
Code Explanation.”

399

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 399

Almost all of the methods in the BugManager class do nothing more than delegate their responsibility to
a method with the same name in the BugMagagerDB class. The only exception is the GetBugList
method that also sorts the list of bugs by using the BugComparer class, which is discussed in the next
section.

BugComparer
The BugComparer class implements the IComparer(Of Bug) interface, which enables sorting of objects
in a list that uses generics. It implements the only required method, Compare, and has a constructor that
accepts the name of a Bug property to sort on as a parameter. The Compare method compares the two
Bug objects passed to it and returns an integer indicating whether the first Bug object is less than, equal
to, or greater than the second Bug object. Because of its tight relation with sorting bugs in the BugManager,
the BugComparer is implemented as a nested class in the BugManager class, visible in Figure 12-8.

CommentManager
When users update an existing bug, they can add a comment to provide additional information. These
comments are handled by the CommentManager class, which is shown in Figure 12-9.

Figure 12-9

This is a very simple class to insert and retrieve comments and has only two methods:

Method Return Type Description

GetCommentList (ByVal DataSet Returns a list of comments for the
bugId As Integer) requested bug by calling into the

CommentManagerDB class.

InsertComment (ByVal n/a Inserts a new comment in the Comment
bugId As Integer, ByVal table in the database and associates it
theBody As String, with the bugId passed to this method.
ByVal theMemberId As Guid)

To get the various lists, such as Frequency and Severity in the presentation layer, the business layer has a
ListManager class, which is discussed next.

ListManager
The ListManager class is responsible for retrieving lists that are displayed on the web site. It has nine
public shared methods (see Figure 12-10) to retrieve applications, features, and lists of other bug properties,
such as the Severity, Reproducibility, Status, and Frequency. These lists are used in the presentation layer to

400

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 400

fill drop-down menus. Because it has only shared methods, the constructor of the class is hidden by mark-
ing it Private. This prevents you from accidentally creating instances of the ListManager class. To use the
methods in the class, you can simply call them on the class name.

Figure 12-10

The ListManager class caches most of these lists in the ASP.NET cache using a SqlCacheDependency,
so there is no need to hit the database every time they are needed. Because these lists are used quite
often, this greatly increases the application’s performance. You see later how this works. The following
table lists the public methods that are used for working with Applications and Features:

Property Return Type Description

GetApplicationItems DataSet Returns a list with Applications as a DataSet
(+ two additional overloads). The DataSet
contains two columns: the ID and the
Description of the item in the database. The
overloads are used to limit the list to active
applications, or to applications to which a
user has access.

GetApplicationDescription String Returns the user-friendly name of an
(ByVal applicationId As application.
Integer)

GetFeatureItems DataSet Returns a list with Feature items as a DataSet.
The DataSet contains two columns: the ID
and the Description of the item in the
database.

The methods that return the lists for Frequency, Reproducibility, Severity, and Status all follow the same
pattern. They return the requested items as a DataSet that has an ID and a Description column. Under
the hood, they call the private method GetListItems and pass it a custom ListType enumeration
(defined in the BusinessLogic folder in the file called ListType.vb) to indicate the type of list to retrieve.
The GetListItems method then calls into the data access layer to get the items from the database.

401

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 401

MemberManager
The MemberManager class (see Figure 12-11) is responsible for changing the user’s access rights in the
database. Because the ASP.NET 2.0 Framework already provides a lot of ready-to-use classes to work with
users and security settings in your application, the implementation of the MemberManager is very simple.

Figure 12-11

The MemberManager class has two public subs that allow you to assign and unassign a user to a specific
application:

Property Description

AssignMemberToApplication Assigns a member indicated by memberId to the
(ByVal memberId As Guid, requested application.
ByVal applicationId As Integer)

UnAssignMemberFromApplication Removes a member from the requested application.
(ByVal memberId As Guid,
ByVal applicationId As Integer)

Both these methods call a private member in the MemberManager class called ChangeMember
ApplicationBinding and pass it either True or False to indicate whether the user should be added to
or removed from the application.

NameValue
Many of the properties of a bug in the database, such as the Severity and the Reproducibility, are actu-
ally foreign keys to other tables in the BugBase database. These tables are often referred to as domain
tables. This means that only the ID is stored with the bug. To the end-user of the application, these IDs
are meaningless. To display the friendly name of these properties in the user interface, the Bug class
exposes these properties as NameValue objects. The NameValue class (see Figure 12-12) has a Value
property that holds the underlying ID in the database. The Name property exposes the friendly name.

You can create a new NameValue by calling the default constructor and then set the Name and Value
properties individually. Alternatively, you can call the overloaded constructor that accepts values for the
Name and Value properties as arguments.

SearchCriteria
The SearchCriteria class (see Figure 12-13) is used by the BugManager in the GetBugList methods.
The GetBugList allows you to search for bugs that match a comprehensive list of search criteria.

402

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 402

Figure 12-12

Figure 12-13

Instead of passing each of these criteria separately to this method, you can pass a single SearchCriteria
object that exposes public properties for each of the criteria. The GetBugList method examines each of
these properties and builds up the criteria parameters that are passed to the database. This is explained
in more detail when the BugManagerDB class is examined in the next section.

The Data Access Layer
The data access layer in the Bug Base is designed to work with SQL Server only, because it uses types
you find in the System.Data.SqlClient namespace, like the SqlConnection and SqlCommand
objects. However, to make it easier to switch databases later in the lifetime of the application, none of the
methods in the layer returns data provider–specific types. Instead, each of these methods returns stan-
dard types like a DataSet, or custom generics lists, like the bug list. If you decide to change the database
you’re using, all you need to change is the methods in the data access layer. As an alternative to chang-
ing the data access layer each time you want to target a different database, you can also recode the data
access layer using the provider factories pattern that you saw in Chapter 6.

403

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 403

The only exception to this rule is the GetList method in the ListManager class. This method uses
SqlCacheDependency classes to cache data from the database. The cache is invalidated whenever the
underlying table in the database changes. SQL cache invalidation only works with SQL Server, so if you
decide to switch databases, you’ll need to modify the GetList method by either removing the code
responsible for caching altogether or by implementing a different caching strategy.

The use of DataSets in the data access layer causes some overhead when compared to lightweight objects
like the DataReader. However, this overhead can be minimized by implementing a thorough caching
strategy, as is done by the methods in the ListManager class. By creating a SqlCacheDependency on
the relevant tables in the database, you can in fact increase performance. All of the domain list tables,
such as Severity and Reproducibility, are cached as DataSets in memory, so there is no need to hit the
database each time you need them. Only when the table is changed — something that won’t happen
very often — is the item removed from the cache and needs to be reconstructed. This greatly reduces the
number of calls made to the database, something that cannot be accomplished using DataReader
objects.

Before discussing the data access layer, you should take a look at the design of the database first.
Because each of the methods in the data access layer talks directly to the SQL Server 2005 database, it’s
important to understand how the database is designed. Figure 12-14 displays the database diagram for
the Bug Base, showing most of its tables and relations.

Figure 12-14

Figure 12-14 does not show the tables that have been added for the ASP.NET 2.0 Membership and Role
providers, except for the aspnet_Users table that has relations with other tables in the Bug Base. The
following table discusses each table in the database and its intended purpose:

404

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 404

Table Name Description

Application Holds a list with all the applications you can file bugs against. The column
IsActive determines whether the application is still in use.

aspnet_Users This table is added by the aspnet_regsql.exe tool when you enable the
database for Membership and Roles. It holds the user accounts for the Bug
Base application. The UserId, a GUID, is used to link other tables to this
table.

Bug The logged bugs are stored in this table. Besides a Title, a Description, and the
date the bug was created and updated, this table largely consists of foreign
keys pointing to domain list tables.

Comment Holds comments that users can add to existing bugs. The CreateMemberId
has a link to the aspnet_Users table to keep track of who added the comment.

Feature Features are the main parts that make up your application. A bug should
be logged against a specific feature, to make it clearer where the bug occurs
and who’s responsible for it. A feature is always tied to an application, so
the Feature table has an ApplicationId column that points back to the
Application table.

Frequency The frequency of a bug defines how often, or by how many users, a bug
will be encountered. This table holds a list with possible options that the
user can choose from.

MemberApplication Users should not be able to log bugs against any arbitrary application. An
Administrator can assign members to a specific application through the
web application. This assignment is stored in the junction table Member-
Application.

Reproducibility The reproducibility of a bug defines whether a bug is reproducible at all,
and if so, how often. Just as the Frequency and Feature tables, this is a
domain list table that stores the description for each item with a primary
key. This key is then used as a foreign key in the Bug table.

Severity The severity describes the impact of the bug. This domain list table holds
the various options for this bug property.

Status This table holds a list with possible status options for a bug. The ClosesBug
column determines whether the bug becomes inactive with a specific status.
This is the case for a status such as Deferred, Closed, or Not a Bug.

In addition to these 10 tables, the database also contains a number of stored procedures. Many of these
procedures follow a strict naming pattern:

❑ sprocTableNameSelectSingleItem

❑ sprocTableNameSelectList

❑ sprocTableNameInsertUpdateSingleItem

405

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 405

The first procedure selects a single record from a table referred to by TableName. The WHERE clause
always uses at least the primary key of the table to limit the number of records to a maximum of 1, as in
the following procedure that queries a feature from the database:

CREATE PROCEDURE sprocFeatureSelectSingleItem

@id int

AS

SELECT
Id,
Description,
ApplicationId

FROM
Feature

WHERE
Id = @id

The *SelectList procedures query a list of related items from the database, such as a list of features,
bugs, applications, and so on. They often look very similar to the SelectSingleItem bugs in terms of
the columns they return, but they don’t use the primary key of the table in the WHERE clause, and they
often sort the result set using an ORDER BY clause.

All the *InsertUpdate procedures are capable of both inserting new and updating existing items in the
database. They do that by looking at the @Id parameter passed to this procedure. If that parameter —
which represents the primary key of the record in the table — is null, a new record is inserted. Otherwise,
an existing record is updated where the @id parameter is used in the WHERE clause as demonstrated in the
following code:

CREATE PROCEDURE sprocFrequencyInsertUpdateSingleItem

@id int = null,
@description nvarchar (100)

AS

DECLARE @returnValue int

IF (@id IS NULL) -- New Item
BEGIN

-- Insert the item here and return its new Id
-- Insert code is left out of the example
SELECT @returnValue = Scope_Identity()

END
ELSE
BEGIN

-- Update the item here and return the existing Id
-- Update code is left out of the example
SELECT @returnValue = @id

END

- Return the new or existing Id to the calling code
RETURN @returnValue

406

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 406

Most of the items in the tables should have unique values. For example, there is no point in having two
identical “Not reproducible” items in the Frequency table, because you wouldn’t be able to distinguish
between the two. Most of the *InsertUpdate procedures use the following code to check for duplicates:

IF (@id IS NULL) -- New Item
BEGIN
IF NOT EXISTS (SELECT 1 FROM Frequency WHERE Description = @description)
BEGIN
-- Insert the item here and return its new Id
-- Insert code is left out of the example

END
ELSE
BEGIN
-- There is already an item with the same description, so return -1
SELECT @returnValue = -1 -- Item already exists

END
END
ELSE
BEGIN
IF NOT EXISTS (SELECT 1 FROM Frequency WHERE

Description = @description AND Id <> @id)
BEGIN
-- Update the item here and return the existing Id
-- Update code is left out of the example

END
ELSE
BEGIN
-- There is already an item with the same description, so return -1
SELECT @returnValue = -1 -- Item already exists

END
END

RETURN @returnValue

With this general pattern in mind it should be easy to understand how most of the procedures work. Not
all procedures follow this strict pattern, so the few exceptions are explained during the discussion of the
data access layer methods that use them.

These stored procedures are called from, and only called from, the methods in the four classes in the
data access layer, which are discussed next.

BugManagerDB
Just as the BugManager class in the business layer, the BugManagerDB class (shown in Figure 12-15) is
responsible for creating, changing, and getting bugs. Methods in this class talk directly to the database,
using objects like the SqlConnection and SqlCommand. None of the methods contain SQL statements —
all data access is done through the use of stored procedures. Most of the methods in this class accept a
Guid that holds the current member’s ID. This ID is used in all stored procedures to determine if the
member has sufficient rights to access the data.

407

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 407

Figure 12-15

Similar to other classes you have seen in this book, the BugManagerDB class has only shared methods, so
its constructor is marked as Private. The three other methods of the BugManagerDB class are listed in the
following table:

Method Return Type Description

GetBug (ByVal id As Integer, Bug Retrieves a bug from the database,
ByVal memberId As Guid) based on the ID passed to this

method. Returns Nothing when the
bug could not be found or the user
doesn’t have permission to view it.

GetBugList () List(Of Bug) Retrieves a list of bugs from the
database based on search criteria.

InsertUpdateBug Integer Saves a fully populated Bug object in
(ByVal theBug As Bug) the database. The Integer returned

from this method is the new or current
ID of the bug in the database.

CommentManagerDB
The CommentManagerDB class, shown in Figure 12-16, performs the data access for the two methods
defined in the CommentManager class.

Figure 12-16

Just as the CommentManager class, the CommentManagerDB class has only two methods (besides its hid-
den constructor): one for getting a list of comments that belong to a certain bug, and one to create a new
comment, as explained in the following table:

408

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 408

Method Return Type Description

GetCommentList (ByVal DataSet Returns a list of comments sorted by date
bugId As Integer) in descending order for the requested bug.

InsertComment (ByVal bugId n/a Inserts a new comment in the Comment
As Integer, ByVal theBody table and associates it with the bug
As String, ByVal theMemberId designated by bugId.
As Guid)

To get lists of items, such as Frequency and Severity, from the database, the application has a
ListManagerDB class.

ListManagerDB
The ListManagerDB class has fewer methods than the ListManager class in the business layer because
four of the methods in the ListManager class use the same GetListItems method. In addition to the
GetListItems method, the ListManagerDB class has three other methods that map to the ones in the
business layer (see Figure 12-17).

Figure 12-17

The following table gives a description of the entire ListManagerDB class:

Method Return Type Description

GetApplicationDescription String Returns the full description of an application
(ByVal applicationId As based on its ID passed to this method.
Integer

GetApplicationItems DataSet Gets a list of Applications from the and
(ByVal activeOnly As returns it as a DataSet. The activeOnly
Boolean, ByVal memberId parameter is used to limit the list to active
As Guid) applications. The memberId can be used to

limit the list to applications to which the
member has access.

GetFeatureItems (ByVal DataSet Gets a list of Feature items from the
applicationId As Integer) database and returns it as a DataSet.

GetListItems (ByVal DataSet Returns a list with the requested items as
theListType As ListType) a DataSet. The ListType parameter deter-

mines the type of list to return.

409

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 409

The Member class in the business layer also has a counterpart in the data access layer: the MemberManagerDB
class.

MemberManagerDB
The MemberManagerDB class has a single sub that can assign or remove a member from a specific
application:

Method Description

ChangeMemberApplicationBinding Assigns or removes a member from an application.
(ByVal memberId As Guid, ByVal When mustAssign is set to True, the member is
applicationId As Integer, ByVal assigned to the requested application; otherwise the
mustAssign As Boolean) member is removed.

In addition to the files in the BusinessLogic and DataAccess folders, two other files located in the App_Code
folder are used throughout the site. The file AppConfiguration.vb contains a class with read-only properties
that are essentially wrappers around the various <appSettings> keys in the Web.config file. Instead of
typing ConfigurationManager.ConnectionStrings(“BugBase”).ConnectionString each time you
need the connection string, you can now simply type AppConfiguration.ConnectionString.

The Helpers.vb file contains a few helper methods that are used in various pages in the site. The following
section, “Code and Code Explanation,” discusses some of the methods defined in the file, such as
SetMemberId and CheckApplicationState. The FormatGridViewPagerBar method is used to format
the pager bar that is displayed on each of GridView controls used in the application. That method isn’t
explained any further, but it has enough inline comments for you to understand how it works.

Now that you’ve seen the design of the Bug Base and all of its important classes, it’s time to examine the
.aspx pages, their code-behind files, and the implementation of the classes in the business logic and data
access layers.

Code and Code Explanation
This section digs into each of the important pages and shows you how they interact with each other and
use the classes in the business layer. Instead of listing each page separately, this section takes a more
usage-oriented approach by examining typical workflows for the Bug Base and discusses each page
you’re visiting in the process. But before starting the tour, a few files need to be discussed first.

Root Files
In the root of the site you’ll find a number of files that are critical for the Bug Base application. Not each
file is explained completely, but instead the focus is on the most important areas.

Web.config
The Web.config file is the central place for storing application settings and configuration information.
For the Bug Base, there are a few important bits in this file.

410

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 410

First of all, there is the connection string that is used throughout the site:

<add name=”BugBase”
connectionString=”server=(local)\SqlExpress;AttachDbFileName=|DataDirectory|BugBase
.mdf;Integrated Security=true;User Instance=true” />

This connection string points to a local name instance of SQL Server called SqlExpress and uses a
database called BugBase. The |DataDirectory| token in the AttachDbFileName attribute tells SQL
Server to try to automatically attach the database located in the App_Data folder of the web site.

The next important piece in the Web.config file is the setup for the Membership and Roles providers that
are used in the Bug Base. These providers allow you to implement security on your site with little to no
coding. By default, when you enable the Membership on a site, ASP.NET creates a default database
called aspnetdb.mdf for you. For the Bug Base, a different database was created that, in addition to the
tables and procedures for membership and roles, also holds the objects required for the Bug Base. To tell
the ASP.NET run time where to look for that database, the <providers> section of the <membership>
node in the Web.config file must be configured correctly:

<membership>
<providers>
<clear />
<add name=”AspNetSqlMembershipProvider”
type=”System.Web.Security.SqlMembershipProvider, System.Web,

Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a”

connectionStringName=”BugBase”
enablePasswordRetrieval=”false”
enablePasswordReset=”true”
requiresQuestionAndAnswer=”false”
applicationName=”/”
requiresUniqueEmail=”true”
passwordFormat=”Hashed”
maxInvalidPasswordAttempts=”5”
passwordAttemptWindow=”10”
passwordStrengthRegularExpression=””

/>
</providers>

</membership>

The <clear /> element removes the AspNetSqlMembershipProvider that is set up by default in the
Machine.config file that applies to all sites on your server. The default setup points to the aspnetdb.mdf
database mentioned earlier. Without removing this element, it’s not possible to override the settings
and have the MembershipProvider use the custom database instead. With the original element
removed, you can add your own and then indicate you want to use the BugBase database by setting the
connectionString attribute that in turn points to the connection string defined earlier. The other
attributes have to do with security settings for the provider. Refer to the MSDN documentation for their
usage.

The Bug Base uses a role-based security mechanism to determine which actions a user is allowed to per-
form. Just as with the MembershipProvider, ASP.NET 2.0 has a ready-made provider for this, called the
RoleProvider. The section that sets up this provider in the Web.config file looks like this:

411

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 411

<roleManager defaultProvider=”SqlProvider”
enabled=”true”
cacheRolesInCookie=”true”
cookieName=”.ASPROLES”
cookieTimeout=”30”
cookiePath=”/”
cookieRequireSSL=”false”
cookieSlidingExpiration=”true”
cookieProtection=”All”

>
<providers>
<add
name=”SqlProvider”
type=”System.Web.Security.SqlRoleProvider”
connectionStringName=”BugBase”
/>

</providers>
</roleManager>

To show you the different options, the <roleManager> takes a different approach. Instead of using the
<clear /> element to clear a previously defined role manager (called AspNetSqlRoleProvider in the
Machine.config file), this code block sets up an entirely new provider with the name of SqlProvider.
Because there is no conflict with an existing provider on the system, you don’t need to use <clear /> first.

This is all that’s required to configure the application so it uses the built-in Membership and Role
providers.

The Web.config file also contains settings that determine if and to what e-mail address errors that occur
should be e-mailed by code in the Global.asax file. The usage of these keys is further explained when the
Global.asax file is discussed.

At the bottom of the Web.config file you find a number of <location> nodes. These nodes override the
default <authorization> element to block or allow access to some files and folders for specific roles.

MasterPage.master
The master page defines the look and feel for all the pages in the site. This ensures a consistent layout
throughout the site and makes it very easy to apply site-wide changes. The file consists largely of static
HTML for the layout of the site, but a few sections are worth examining in greater detail.

The main menu that appears at the top of every page is made up of nested and tags. The CSS
file for the menu, Menu.css, is responsible for hiding or displaying the menus when you hover over
them. Inside the menu a LoginView control is used to determine which menu items a user has access to,
based on the current user’s role. The following code snippet demonstrates this:

<asp:LoginView runat=”server” ID=”lvReporting”>
<RoleGroups>
<asp:RoleGroup Roles=”Manager”>
<ContentTemplate>

<div>
Reporting

</div>

412

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 412

Reports

</ContentTemplate>

</asp:RoleGroup>
</RoleGroups>
</asp:LoginView>

The content defined in the ContentTemplate is only accessible to users that are in the roles defined on
the RoleGroup element, in this case the Manager role only.

The second important piece in the Master file is the use of ContentPlaceHolder controls. A Content
PlaceHolder defines a region that can be overridden by pages that use the master page. The master
page has two placeholders — one for the page title and one for content section of the page. The page title
looks like this:

<h1>
<asp:ContentPlaceHolder ID=”plcTitle” runat=”server”></asp:ContentPlaceHolder>

</h1>

The placeholder is put inside an <h1> tag so the content is always rendered as a heading. The place-
holder for the main content section of each page looks very similar to the one for the heading.

Global.asax
The Global.asax file contains code for only one of the events, namely Application_Error. Whenever
an unhandled exception occurs in the application, this event is fired. The code for this event builds up a
string with the error details and sends it as an e-mail to the address configured in the Web.config. Before
you enable this feature by setting SendMailOnErrors to True, make sure you also set valid e-mail
addresses and an SMTP server in the Web.config file.

Web.sitemap
The final file in need of discussion is Web.sitemap. This file contains a lot of siteMapNode elements that
define a conceptual map of the web site. This file is used as the data source for the SiteMapPath control
in the BreadCrumb section of the master page. It’s also used to feed the TreeView control used in the
SiteMap.aspx page in the Help folder.

Now that you’ve seen some of the framework files, it’s time to look at the files that are used in a typical
workflow.

Filing a Bug
The central action of a Bug Base application is of course filing a bug, so it’s a logical choice to look at that
first. This section walks you through filing a new bug, explaining each of the important parts of the files you
visit in the process. This section assumes that the Bug Base is installed at http://localhost/BugBase.
Refer to the section called “Setting up the Bug Base” for more details about installing the application.

413

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 413

When you open the homepage of the Bug Base at http://localhost/BugBase the first time, you’re
presented with a Login screen instead. The <authorization> section in the Web.config file blocks
access to each of the pages in the site to unauthorized users. When an unauthorized request is made,
you’re redirected to the Login page instead. This Login page contains very little code because most of the
functionality required to log in a user is available out of the box. The markup section of the page contains
just a Login control:

<asp:Login ID=”Login1” runat=”server” InstructionText=”Before you can
work with the Bug Base, you need to login.
Please type your user name and
password and click the Log In button.”

TitleText=”” DestinationPageUrl=”~/Bugs/SwitchApplication.aspx”
DisplayRememberMe=”False”>

</asp:Login>

The DestinationPageUrl attribute is set to SwitchApplication.aspx, the page the user is redirected
to after a successful login. As a security measure, the Remember Me checkbox is disabled so users are
required to log in each time they visit the bug base. If you get tired of entering your name and password
every time, simply set the DisplayRememberMe attribute to True. This will display an additional
Remember Me checkbox allowing you to automatically log in each time you return to the site.

There is no code in the code-behind file for this page — the authentication is completely carried out by
the ASP.NET Framework.

When you supply a valid username and password (you can log in with the accounts listed at the beginning
of this chapter) and click the Log In button you’re automatically logged in. ASP.NET validates the user
against the database, and when the login details are correct the roles for the user are retrieved and stored in
an encrypted cookie.

After you log in you’re redirected to SwitchApplication.aspx. Before you can work with most of the
pages in the Bug Base you need to select an active application to work with. The SwitchApplication page
allows you to select that application. In the Page_Load event of this page, the following code fires:

Helpers.SetMemberId()

The SetMemberId method, which you’ll find in the Helpers.vb file in the App_Code folder, tries to
retrieve the current user’s ProviderUserKey, which is the unique ID for the user. This key is stored in a
session variable so it’s available to all pages in the site. When the retrieval fails, the user is redirected
back to Login.aspx.

The drop-down on the SwitchApplication page lists all the applications to which the user has access. The
drop-down is filled by an ObjectDataSource control that calls an overloaded version of the method
GetApplicationItems in the business layer:

<asp:ObjectDataSource ID=”ObjectDataSource1” runat=”server”
SelectMethod=”GetApplicationItems” TypeName=”ListManager”>

<SelectParameters>
<asp:SessionParameter Name=”memberId” SessionField=”MemberId” />

</SelectParameters>
</asp:ObjectDataSource>

This method expects the current user’s ID, which is passed to this method using a SessionParameter
that retrieves the ID from a session variable called MemberId set earlier by the SetMemberId method.

414

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 414

The GetApplicationItems method in turn calls another overloaded version that delegates the call to a
method with the same name in the data access layer. This method is responsible for retrieving the appli-
cations from the database. The code in this method is typical for many of the data access methods in the
data access layer:

Public Shared Function GetApplicationItems(_
ByVal activeOnly As Boolean, ByVal memberId As Guid) As DataSet

Dim dataSet As DataSet = New DataSet()
Dim sql As String = “sprocApplicationSelectList”

Try
Using myConnection As New SqlConnection(AppConfiguration.ConnectionString)
Dim myCommand As SqlCommand = New SqlCommand(sql, myConnection)
myCommand.CommandType = CommandType.StoredProcedure

myCommand.Parameters.AddWithValue(“@activeOnly”, activeOnly)
If Not memberId = Guid.Empty Then
myCommand.Parameters.AddWithValue(“@memberId”, memberId)

End If

Dim myDataAdapter As SqlDataAdapter = New SqlDataAdapter()
myDataAdapter.SelectCommand = myCommand
myDataAdapter.Fill(dataSet)

myConnection.Close()

Return dataSet
End Using

Catch ex As Exception
Throw

End Try
End Function

First, the name of the stored procedure in the database is set. Then a new SqlConnection is created.
The connection string comes from the custom class AppConfiguration that you saw earlier.

Then a SqlCommand is set up by assigning important properties such as the CommandText, CommandType,
and Connection. The activeOnly parameter of the stored procedure determines whether all or only the
active applications are to be retrieved from the database. As a second parameter, the ID of the member is
passed. This ensures that you only get applications back that are assigned to the current user.

Finally, a SqlDataAdapter is created, which is then used to fill the DataSet with the results from the
database using the SqlDataAdapter’s Fill method.

The stored procedure that gets the items from the database looks like this:

CREATE PROCEDURE sprocApplicationSelectList
@activeOnly bit = null,
@memberId uniqueidentifier = null

AS

SELECT DISTINCT

415

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 415

Id,
Description,
IsActive

FROM
Application
LEFT OUTER JOIN MemberApplication

ON Application.Id = MemberApplication.ApplicationId
WHERE
(IsActive = @activeOnly OR @activeOnly IS NULL)
AND (MemberApplication.MemberId = @memberId OR @memberId IS NULL)

ORDER BY
Descriptionn

This stored procedure retrieves a list of all the applications that are assigned to the current member.
You’ll recall from the discussion of the data model that members are linked to applications with the junc-
tion table called MemberApplication. The code in the stored procedure uses that junction with the LEFT
OUTER JOIN to limit the list of applications to those that the member has access to. The LEFT OUTER
JOIN as opposed to an INNER JOIN is used to allow the procedure to return all applications regardless
of the member’s access rights when the parameter @memberId is null. This is used in the Management
section that you see later.

When the ObjectDataSource in the .aspx page is done with the GetApplicationItems method, hav-
ing retrieved the data, it fires its Selected event. In this event you can check if any data was returned
from the database by looking at the ReturnValue property of the e argument. If the DataSet is empty —
which it will be when the current member has no applications assigned — the drop-down is hidden and
the user is presented with an error message:

Protected Sub ObjectDataSource1_Selected(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.ObjectDataSourceStatusEventArgs) _
Handles ObjectDataSource1.Selected

If CType(e.ReturnValue, DataSet).Tables.Count > 0 _
AndAlso CType(e.ReturnValue, DataSet).Tables(0).Rows.Count = 0 Then

lblErrorMessage.Visible = True
lstApplication.Visible = False
btnApply.Visible = False

End If
End Sub

When the user has chosen an application from the drop-down and clicked the Apply button, the following
code is executed:

Helpers.SetApplication (Convert.ToInt32(_
lstApplication.SelectedValue), lstApplication.SelectedItem.Text)

Dim redirectUrl As String = “~/Bugs/”
If Request.QueryString.Get(“OriginalPage”) IsNot Nothing Then
redirectUrl = Request.QueryString.Get(“OriginalPage”)

End If
Response.Redirect(redirectUrl)

This code sets the active application by calling Helpers.SetApplication, which stores the application
ID in a session variable and then redirects the user to the previous page or to the default page in the
Bugs folder when there was no previous page.

416

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 416

With all the required variables set up, it’s time to file an actual bug. If you choose File New Bug from the
main Bugs menu, the AddEditBug.aspx page located in the Bugs folder appears. This page is shown in
Figure 12-3 at the beginning of this chapter.

Theoretically, the form on that page would have been an ideal candidate for the new <asp:FormView>
control that allows you to quickly set up an Insert and Edit page. All you need to do is bind the FormView
control to a few methods in your business layer, and Visual Web Developer will create the necessary insert
and edit templates for you. However, the way the Bug class is designed proves to be problematic for the
FormView. By design, the FormView can only work with direct properties such as the Bug’s Title or
Description. However, some of the Bug’s properties are actually NameValue objects of which the FormView
has no knowledge. Because of this lack of knowledge, the FormView isn’t able to correctly bind to the data
stored in the Bug object. Future versions of the .NET Framework may bring direct support for more com-
plex properties like the NameValue object, but until that time you need to work around these limitations.
Although there are ways to make the FormView work with the NameValue objects, the amount of code
required to make that work isn’t worth the benefit of the FormView in the first place. That’s why the Insert
and Update forms were built as a regular form with text boxes and drop-down controls nested in an HTML
table. If you do decide to implement a FormView to bind to objects with complex custom properties, the
trick is to use Eval in your binding syntax in the .aspx portion of the page instead of Bind. Then in the
code-behind you can write code for the FormView control’s ItemInserting and ItemUpdating events
and create and assign new instances of your custom objects to the e.Values or e.NewValues properties of
the arguments of the Inserting and Updating methods.

The AddEditBug.aspx page can be viewed in two different ways — one where each of the controls like the
drop-downs are editable, and one where most of the controls have been replaced with static labels. The first
view is used when any user is filing a new bug or when a developer or manager is editing a bug. The second
view is used when a tester is editing a bug. Once a bug has been filed, a tester can no longer change the
properties of a bug, so all controls are replaced with static text, showing the underlying values.

Determining which controls to show and which to hide takes place in the LoadData method, which is
discussed after the exploration of Page_Load.

The first thing that the AddEditBug.aspx page does when it loads is execute the following code in the
Page_Load event:

If Request.QueryString.Get(“ApplicationId”) IsNot Nothing Then
Dim applicationId As Integer = _

Convert.ToInt32(Request.QueryString.Get(“ApplicationId”))
Dim applicationDescription As String = _

ListManager.GetApplicationDescription(applicationId)
Helpers.SetApplicationSession(applicationId, applicationDescription)

End If

Helpers.CheckApplicationState (_
Server.UrlEncode(Page.AppRelativeVirtualPath & “?” & _
Request.QueryString.ToString()))

If Request.QueryString.Get(“Id”) IsNot Nothing Then
bugId = Convert.ToInt32(Request.QueryString.Get(“Id”))

End If

If Not Page.IsPostBack Then
LoadData()

End If

417

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 417

The first seven lines of code check if there is an ApplicationId on the query string. If there is one it
switches to that application automatically. This is used in the Reporting page, described later in this chapter.

Then the application is validated. The AddEditBug page requires an active application stored in a session
variable. If the variable isn’t present, the CheckApplicationState method redirects the user to the
SwitchApplication page and passes along the URL of the current page so the user can be redirected back
after an application has been chosen.

If there is also an Id on the query string, it’s converted to an Integer and stored in the private variable
bugId. This bugId variable is later used in the code to determine the bug that must be retrieved from
and stored in the database.

Finally, when the page is loading for the first time, all the controls are data-bound by calling
LoadData().

The LoadData() method starts off with binding the four drop-downs (lstFeature, lstFrequency,
lstReproducibility, and lstSeverity) to their data sources. Each of these controls is bound to an Object
DataSource control. These ObjectDataSource controls get their data by calling static methods in the
ListManager class. Take a look at how the Frequency drop-down is bound to understand how this
works. First, the page contains the following DataSource declaration:

<asp:ObjectDataSource ID=”odsFrequency” runat=”server”
SelectMethod=”GetFrequencyItems” TypeName=”ListManager”>

</asp:ObjectDataSource>

The page also contains the following declaration for a drop-down:

<asp:DropDownList ID=”lstFrequency” runat=”server”
AppendDataBoundItems=”True” DataSourceID=”odsFrequency”
DataTextField=”Description” DataValueField=”Id” Width=”180px”>

<asp:ListItem Value=””>Please make a selection</asp:ListItem>
</asp:DropDownList>

The drop-down is bound to the DataSource by setting its DataSourceID attribute. To ensure that the
static “Please make a selection” list item remains present, AppendDataBoundItems is set to True.

When the drop-down is data-bound in the code-behind, the ObjectDataSource control’s DataBind
method is invoked. The control then calls the GetFrequencyItems method located in the ListManager
class. This method calls a private method called GetListItem and passes it an enumeration of ListType
.Frequency. The GetListItem method then gets the requested items from the database and stores them
in the cache with a SqlCacheDependency attached to it. This ensures that the cached item is invalidated
when the table used for the dependency is changed. The GetListItem method looks like this:

Private Shared Function GetListItems(_
ByVal myListType As ListType) As DataSet

Dim listItems As DataSet
Dim cacheKey As String = myListType.ToString() + “DataSet”
Dim tableName As String = myListType.ToString()

Dim SqlDep As SqlCacheDependency = Nothing

If HttpContext.Current.Cache(myListType.ToString() _

418

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 418

+ “DataSet”) IsNot Nothing Then
listItems = CType(HttpContext.Current.Cache(cacheKey), DataSet)

Else
‘ (Re)create the data and store it in the cache
listItems = ListManagerDB.GetListItems(myListType)

Try
‘ Create a new SqlCacheDependency.
SqlDep = New SqlCacheDependency(_

AppConfiguration.DatabaseName, tableName)

Catch exDNEFNE As DatabaseNotEnabledForNotificationException
‘ Handle DatabaseNotEnabledForNotificationException
Throw
Catch exTNEFNE As TableNotEnabledForNotificationException
Throw

Finally
HttpContext.Current.Cache.Insert(cacheKey, listItems, SqlDep)

End Try
End If

Return listItems

End Function

This method first tries to get the requested item from the cache. If it exists, it’s cast to a DataSet so it can
be returned to the calling code. If the item no longer exists, it’s created by calling GetListItems in the
ListManagerDB class and passing it the requested ListType. That method returns a DataSet that is
stored in the cache using a SqlCacheDependency.

Before you can use SqlCacheDependencies in your application, you need to set up your database to sup-
port them. The database that comes with the Bug Base has already been set up for SQL cache invalidation,
but if you’re using your own database, or need to enable caching on an existing database, use the following
command from your ASP.NET 2.0 installation folder (located under %WinDir%\Microsoft.NET\
Framework):

aspnet_regsql.exe -S (local)\InstanceName -E -ed -d DatabaseName -et -t TableName

This registers the table you specify with TableName in the database DatabaseName. You can type aspnet
_regsql.exe /? to get a help screen for this application.

The constructor for the SqlCacheDependency expects the name of the database you’re setting up the
dependency against. Instead of hard-coding BugBase in the constructor method, there is a shared and
public property in the AppConfiguration class that returns the name of the database. With that property,
you can simply pass AppConfiguration.DatabaseName as the first argument to the constructor.

The constructor for the SqlCacheDependency class throws errors when either the database or the
requested table hasn’t been set up for SQL caching. When an error is thrown, you simply rethrow it using
the Throw keyword, so it will bubble up in the application to eventually cause an error that is caught by the
Application_Error handler in the Global.asax file. If you don’t want to use SQL caching because you’re
using a different database, you can simply remove the caching code from the GetListItems method.
Alternatively, you can decide to store the data in the cache for a limited amount of time. This way you still
have the benefits of caching, but you run the risk of working with stale data.

419

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 419

The code for the GetListItems method in the ListManagerDB class is very similar to the code you saw
earlier for the GetApplicationItems. The only thing that’s different is the way the name of the stored
procedure is determined by looking at the ListType argument that is passed to this method:

Dim sql As String = “”
Select Case theListType
Case ListType.Frequency
sql = “sprocFrequencySelectList”

Case ListType.Reproducibility
sql = “sprocReproducibilitySelectList”

Case ListType.Severity
sql = “sprocSeveritySelectList”

Case ListType.Status
sql = “sprocStatusSelectList”

Case Else
Throw New ArgumentException(“ListType must be a valid “ & _
“ListType enum. Current value is “ + theListType.ToString)

End Select

This process is repeated for each of the four drop-downs at the top of the page: lstFeature, lstReproducibility,
lstFrequency, and lstSeverity.

With the four drop-downs bound to their data source the next step is to retrieve the bug from the database,
but only when AddEditBug.aspx is in edit mode. Retrieval of a bug is done with the BugManager class:

Dim myBugManager As BugManager = New BugManager(Helpers.GetMemberId)

A new instance of the BugManager is created and the current member’s ID is passed to the constructor
by calling Helpers.GetMemberId, which simply returns the session variable MemberId as a Guid. The
MemberId is used for access rights checks in each of the BugManagerDB methods.

Dim myBug As Bug = myBugManager.GetBug(bugId)

The Bug object is retrieved by calling GetBug and passing it the ID of the requested bug. The GetBug
method checks if a valid member ID has been passed and then delegates the responsibility of retrieving
the bug from the database to the GetBug method in the BugManagerDB class. This method is similar to
other methods in the data access layer when it comes to setting and opening the SQL connection. What’s
different is that a SqlDataReader is used to hold the data instead of a DataSet. This DataReader is then
used to fill the properties of the Bug object like this:

Using myReader As SqlDataReader = _
myCommand.ExecuteReader(CommandBehavior.CloseConnection)

If myReader.Read Then
theBug = New Bug(myReader.GetInt32(myReader.GetOrdinal(“Id”)))
theBug.Title = myReader.GetString(myReader.GetOrdinal(“Title”))
‘ ... other properties are set here

Else
theBug = Nothing

End If
myReader.Close()

End Using

420

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 420

If the bug was found in the database, a new Bug object is created and then all of its public properties are
set. Notice that GetOrdinal is used to retrieve a column’s index in the DataReader. This is because
each of the Get* methods expects an Integer with the column’s position and not a string with the column
name. Using GetOrdinal might make this code just a little slower, but it also makes it a lot more readable
and flexible. Instead of knowing the exact location of a column in the result set, all you need to remember
is the column’s name.

You pass the enumeration CommandBehavior.CloseConnection to the ExecuteReader method to
ensure that the connection is closed when the reader is closed at the end of the Using block. This is good
programming practice, because it explicitly closes the connection object, freeing up valuable resources.

Six of the properties of the Bug class are NameValue objects to expose both their internal ID and the user-
friendly description. The NameValue objects are retrieved from the DataReader like this:

theBug.Status = New NameValue(myReader.GetInt32(_
myReader.GetOrdinal(“StatusId”)), _
myReader.GetString(myReader.GetOrdinal(“StatusDescription”)))

This code creates a new NameValue object, passes the ID and Name to the constructor of that class, and
then assigns the object to the Bug object’s Status property. This allows you to access the property in
your code like this, for example:

lblStatus.Text = theBug.Status.Name

When the bug is not found in the database, or the user doesn’t have enough rights to view it, Nothing is
returned. Therefore, in the calling code back in AddEditBug.aspx you need to check if the object equals
Nothing. If the bug is not Nothing, the bug’s properties are bound to the form controls:

If myBug IsNot Nothing Then
If User.IsInRole(“Developer”) OrElse User.IsInRole(“Manager”) Then
If lstFeature.Items.FindByValue(_

myBug.Feature.Value.ToString()) IsNot Nothing Then
lstFeature.Items.FindByValue(myBug.Feature.Value.ToString()).Selected = True

End If
‘ ... other controls are set here

This code executes only when the current user is in one of the required roles. If the user is a not a devel-
oper or a manager, she is not allowed to change any of the existing fields; static labels are shown instead,
as in Figure 12-18.

Figure 12-18

Whereas a developer or a manager sees Figure 12-19.

421

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 421

Figure 12-19

The rest of the code in this method is responsible for hiding or displaying the relevant controls on the page.

When the Save button is clicked, btnSave_Click is called and the page is validated by calling Page
.Validate(). When the page is completely valid, a new Bug object is created or an existing one is
retrieved from the database using an instance of the BugManager:

Dim memberId As Guid = Helpers.GetMemberId()
Dim myBugManager As BugManager = New BugManager(memberId)
Dim myBug As Bug
If bugId > 0 Then
myBug = myBugManager.GetBug(bugId)

Else
myBug = New Bug()
myBug.Application.Value = Helpers.GetApplicationId()
myBug.CreateMemberId = memberId

End If

Next, each of the bug’s properties is retrieved from the form controls:

myBug.Title = txtTitle.Text
myBug.Feature.Value = Convert.ToInt32(lstFeature.SelectedValue)
myBug.Frequency.Value = Convert.ToInt32(lstFrequency.SelectedValue)
myBug.Priority = Convert.ToInt32(lstPriority.SelectedValue)
‘ ... other properties are set here

If bugId > 0 Then
‘ Only when we’re editing the bug, update the status field.
myBug.Status.Value = Convert.ToInt32(lstStatus.SelectedValue)

End If

Notice that you only need to set the Value of each of the NameValue properties. The database only works
with the internal IDs and doesn’t care about the “friendly descriptions” of these objects.

Once all the public properties have been set, the bug is saved by calling myBugManager.Insert
UpdateBug(myBug) on the BugManager class. The InsertUpdateBug method passes the bug to a
method with the same name in the data access layer that saves the bug in the database:

Public Shared Function InsertUpdateBug(ByVal theBug As Bug) As Integer
Dim sql As String = “sprocBugInsertUpdateSingleItem”

Try
Using myConnection As New SqlConnection(AppConfiguration.ConnectionString)

Dim myCommand As SqlCommand = New SqlCommand(sql, myConnection)
myCommand.CommandType = CommandType.StoredProcedure

If theBug.Id > 0 Then

422

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 422

myCommand.Parameters.AddWithValue(“@id”, theBug.Id)
End If
myCommand.Parameters.AddWithValue(“@title”, theBug.Title)
myCommand.Parameters.AddWithValue(“@description”, theBug.Description)
‘ ... other properties are set here
myCommand.Parameters.AddWithValue(“@frequencyId”, theBug.Frequency.Value)

Dim myParam As SqlParameter = New SqlParameter
myParam.Direction = ParameterDirection.ReturnValue
myCommand.Parameters.Insert(0, myParam)

myConnection.Open()
myCommand.ExecuteNonQuery()
theBug.Id = CType(myParam.Value, Integer)
myConnection.Close()

Return theBug.Id
End Using

Catch ex As Exception
Throw

End Try
End Function

When the Bug.Id is greater than zero, it is passed to the stored procedure by the AddWithValue method
that creates a new parameter and sets the ID of the bug. Otherwise, the parameter remains null. The
stored procedure knows that when the @id parameter is null it should insert a new bug item or update
the item otherwise. Just as with the Id property, the code adds parameters for each of the public properties
of the bug. At the end, an additional ReturnValue parameter is set up that retrieves the ID of the bug
once it has been inserted or updated. With all the parameters set up, ExecuteNonQuery is called to save
the bug in the database.

After the bug has been saved, the user is redirected back to the Bug List page, where the new bug appears
at the top of the list. From this list, you can click the bug’s title to open the ViewBug page. This page displays
a read-only version of the bug that is easy to print. The concepts used in this page are very similar to
those in the AddEditBug page, without the additional complexity of hiding and displaying the relevant
controls.

This concludes the process of inserting and updating bugs. The next step is to look at how you can
retrieve bugs that have been filed from the database.

Searching and Viewing Bugs
When the number of bugs you have logged in the Bug Base grows, it becomes harder to manage them.
The Bug List page for an application allows you to select active or inactive bugs, allowing you to focus
on the open bugs. However, even that list of open bugs may grow quite long. And what if you wanted to
find an older bug you know exists that has similar characteristics as a new bug you have found? With
just the bug list pages, you’d be browsing through the list of bugs forever.

So to make it easier to find bugs, you need a good search tool. Fortunately, the Bug Base comes with a
useful search tool. In fact, it comes with two search tools! On the main Bugs menu you find the Search
Bugs item, which allows you to search for bugs in the current application. Under Reporting you find the

423

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 423

Reports menu item that also allows you to search for bugs. Both search pages have a lot in common, but
there are some important differences.

First of all, the Reports page is only accessible by members of the Manager group. If you’re not in that
group, the menu item Reporting is not even visible. On the reporting page, you can search for bugs in all
applications at the same time, whereas on the Search page your search is limited to the current applica-
tion. This distinction is necessary to prevent testers or developers on one application from seeing bugs
logged in an application they don’t have access to. Another difference is the possibility to search for a
bug by its ID or a keyword on the search page. When searching for a bug, this is very useful because
bugs are often referred to by their ID. On the reporting page, this option makes less sense. Usually, the
purpose of the reporting page in a bug tracking tool is to get a list of bugs of a certain status, such as all
open bugs. This allows a manager to quickly view the progress made in an application, or get a list of all
bugs that still need work.

Despite the differences in functionality from a user’s point of view, these two pages work pretty much the
same in terms of code. The next section dissects the Reports page and shows you how it works. Once you
understand the Reports page you should have no trouble finding out what goes on in the Search page.

When you open the Reports page from the Reporting menu, you get the screen displayed in Figure 12-20.

Figure 12-20

424

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 424

This form allows a user to set up a list of search criteria including the period the bug was filed, the appli-
cation and its features, the person who filed the bug, and the severity, the status, and the priority. Once
you choose an application from the Application drop-down, the page reloads to show you a list of fea-
tures for the selected application. Except for the Application drop-down, you can select multiple options
for all the other lists. Once you click the Report button, you get a list with the bugs that match your crite-
ria, as shown in Figure 12-21.

Figure 12-21

If you want to change your search criteria, click the Change Search Criteria link at the top of the page.
This reveals the form controls from Figure 12-20 again.

Take a look at the markup of Default.aspx in the Reports folder to see how this page works. Most of the
concepts used in this page have already been used in other pages, such as AddEditBug. The page con-
sists largely of controls that are bound to ObjectDataSource controls, which in turn are bound to meth-
ods in the business layer. A few things are different, though, and worth examining more closely. First of
all, there’s the ObjectDataSource called odsMembers created with the following code:

<asp:ObjectDataSource ID=”odsMembers” runat=”server”
SelectMethod=”GetAllUsers”
TypeName=”System.Web.Security.Membership”

>

425

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 425

Instead of calling a method in the business layer of the Bug Base, this control is hooked up to the
Membership provider and calls its GetAllUsers method. This method then returns a collection of
MembershipUser objects. A MemberhipUser has a ProviderKey and a UserName, the two fields that
are used as the DataKeyField and DataValueField of the drop-down that displays the users:

<asp:ListBox ID=”lstMember” runat=”server” DataSourceID=”odsMembers”
DataTextField=”UserName” DataValueField=”ProviderUserKey”
AppendDataBoundItems=”True” SelectionMode=”Multiple”>

<asp:ListItem Value=”” Selected=”True”>[Don’t Filter]</asp:ListItem>
</asp:ListBox>

Getting a list of users in a web page doesn’t get any easier than this!

The next piece of code you should look at is the code for the drop-down that displays the applications.
The drop-down has its AutoPostBack property set to True, which means the page is posted back to the
server whenever a new item is chosen in the drop-down. In the code-behind for the page you’ll find a
method that fires whenever a postback occurs:

Protected Sub lstApplications_SelectedIndexChanged(_
ByVal sender As Object, ByVal e As System.EventArgs) _
Handles lstApplications.SelectedIndexChanged

lstFeature.Visible = True
lstFeature.Items.Clear()
lstFeature.Items.Insert(0, New ListItem(“[Don’t Filter]”, “”))
lstFeature.Items(0).Selected = True

End Sub

Inside this method, the Visible property of the Feature drop-down is set to True, and a new, static item
is added to the list. By making the control visible, the ASP.NET run time knows that it now has to bind
the control to its associated ObjectDataSource that looks like this:

<asp:ObjectDataSource ID=”odsFeature” runat=”server”
SelectMethod=”GetFeatureItems” TypeName=”ListManager”>

<SelectParameters>
<asp:ControlParameter ControlID=”lstApplications”

DefaultValue=”-1” Name=”applicationId”
PropertyName=”SelectedValue” Type=”Int32” />

</SelectParameters>
</asp:ObjectDataSource>

This ObjectDataSource control has a SelectParameter of type ControlParameter that looks at the
SelectedValue property of the Applications drop-down and passes it to the GetFeatureItems method.
This method, placed in the business layer, only returns the features for the requested application.

The ObjectDataSource for the feature then fires its Selected event when it’s done retrieving the data.
Inside this method for this event, the Feature drop-down is hidden when there are no items returned
from the database:

Protected Sub odsFeature_Selected(ByVal sender As Object, ByVal e _
As System.Web.UI.WebControls.ObjectDataSourceStatusEventArgs) _
Handles odsFeature.Selected

Dim featureListVisible As Boolean = _

426

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 426

(CType(e.ReturnValue, DataSet)).Tables(0).Rows.Count > 0
lstFeature.Visible = featureListVisible
lblFeature.Visible = featureListVisible

End Sub

The first line of code in this method looks at the number of rows in the table in the DataSet, exposed by
the ReturnValue property of the e argument. When the number is greater than zero, feature
ListVisible is True and the list is visible. Otherwise, the list is made invisible.

All the other drop-down controls don’t need additional code to function. Because they are always visible,
the ASP.NET Framework binds them when the page loads. And with their EnableViewState property set
to True (the default), they automatically maintain their state so there is no need to bind them again on
postback.

There is, however, one control that must be bound manually and that’s the GridView. There is no need to
bind that control on every page load or postback, because you should be able to make a detailed selection
first. Once the selection is complete, you should click the Report button to get the selected bugs from the
database. The Click event of the Report button causes the following chain of events to fire.

First, the LoadData method is called:

Private Sub LoadData()
GridView1.Visible = True
GridView1.DataSourceID = “odsBugList”
GridView1.DataBind()

End Sub

In this method the GridView is made visible and then its DataSourceID is set to the ID of the
odsBugList that is defined in the markup of the page. Finally, by calling DataBind() on the GridView
control, odsBugList gets the data from the database so it can be displayed on the page. Easy as that last
sentence sounds, it’s actually quite a complicated process. You need to look at a few sections in more
detail to understand how this works.

First, there is the ObjectDataSource control in the markup that is set up to call GetBugList in the
business layer:

<asp:ObjectDataSource ID=”odsBugList” runat=”server”
SelectMethod=”GetBugList” SortParameterName=”sortExpression”
TypeName=”BugManager” EnableViewState=”False”>

<SelectParameters>
<asp:Parameter Name=”sortExpression” Type=”String” />
<asp:Parameter Name=”searchCriteria” />

</SelectParameters>
</asp:ObjectDataSource>

In the discussion of the BugManager class you learned that the GetBugList has two overloads. The
ObjectDataSource is targeting the overload with two parameters: the first is a string holding the name
of a property the bug list should be sorted on, and the other is a SearchCriteria object that holds a
range of criteria that the list should be filtered on:

Public Function GetBugList(ByVal sortExpression As String, _
ByVal searchCriteria As SearchCriteria) As List(Of Bug)

427

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 427

How is ASP.NET able to pass the correct parameters to this method? If you look at the definition for the
ObjectDataSource you see two <asp:Parameter> attributes defined in the <SelectParameters>
section. The first one holds the name of the argument of the SelectMethod that is used when sorting.
Here the GridView and the DataSource play nice together. Whenever you click one of the column
headings of the GridView, the SortExpression of the GridView’s column is passed into the
SelectMethod defined on the DataSource. Eventually, this sortExpression ends up in the
GetBugList method where it’s used to sort the list of bugs. This is examined in more detail later.

The second <SelectParameter>— called searchCriteria— is set up in the code-behind for the page.
To see how that object is created and passed to the GetBugList, you first need to understand how the
ObjectDataSource sets up the BugManager it’s going to use. Whenever the ObjectDataSource tries to
bind itself to its DataSource (triggered by calling DataBind on the GridView in the LoadData()
method), the DataSource fires its ObjectCreating event. Inside this event, you can assign the
BugManager to the DataSource object:

Protected Sub odsBugList_ObjectCreating(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.ObjectDataSourceEventArgs) _
Handles odsBugList.ObjectCreating

e.ObjectInstance = myBugManager
End Sub

The myBugManager object is defined as a private variable at the top of the code-behind for the Reports
page and instantiated in Page_Load. In other circumstances there is often no need for this additional
code; the ObjectDataSource itself is able to figure out how to create a new instance of the object it’s
bound to. However, in the Reports page you need access to an instance of the BugManager class to get
the total number of bugs it’s holding, using the Count property.

Once the ObjectDataSource is done with the Creating method, it fires its Selecting event. This event
fires right before the data is retrieved, so it’s a perfect location to set up the values for the arguments that
are going to be passed to GetBugList. In the case of the Reports page, a searchCriteria object is passed:

Protected Sub odsBugList_Selecting(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.ObjectDataSourceSelectingEventArgs) _
Handles odsBugList.Selecting

‘ Build up a SearchCriteria object and set its properties
Dim searchCriteria As SearchCriteria = New SearchCriteria()

‘ Set the Application when selected
If Not lstApplications.SelectedValue = “” Then
searchCriteria.ApplicationId = Convert.ToInt32(lstApplications.SelectedValue)

End If

‘ Set the Feature when selected
For Each myItem As ListItem In lstFeature.Items
If myItem.Selected = True Then
searchCriteria.AddFeature(myItem.Value)

End If
Next

‘ ... other properties are set here

‘ Set Start Date

428

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 428

If Not calStartDate.SelectedDate = DateTime.MinValue Then
searchCriteria.StartDate = calStartDate.SelectedDate

End If

‘ ... other properties are set here

‘ Assign the SearchCriteria object to the InputParameters
‘ collection of the DataSource
e.InputParameters.Item(1) = searchCriteria

End Sub

In this method a new SearchCriteria object is instantiated. Then the values of each of the controls on the
page used for filtering are added to the SearchCriteria object. You’ll notice that for some properties a
method is used that starts with Add. This method adds the value passed to it to an internal comma-separated
list. So, if you selected the features 1, 4, and 16 in the list, the internal variable would hold 1,4,16. When the
stored procedure for the GetBugList method is explained, you discover how this list is used.

Once the properties for the ObjectDataSource are set up, the object is assigned to the InputParameters
collection of the ObjectDataSourceSelectingEventArgs object, using e.InputParameters.Item(1)
= searchCriteria.

The next step in the process is the actual call to GetBugList in the business layer. This method simply
checks if the internal_memberId field is valid, and then calls into the BugManagerDB class, passing up
the memberId and the searchCriteria object:

_theBugList = BugManagerDB.GetBugList(searchCriteria, _memberId)

The GetBugList method in the data access layer and its associated stored procedure are probably the
most complicated pieces of code in the application, so again they are explained in great detail. First take
a look at the beginning of the function:

Public Shared Function GetBugList(ByVal searchCriteria As SearchCriteria, _
ByVal memberId As Guid) As List(Of Bug)

Dim sql As String = “sprocBugSelectList”
Dim theBugList As New List(Of Bug) ‘ BugList to hold all the bugs
Try
Using myConnection As New SqlConnection(AppConfiguration.ConnectionString)
Dim myCommand As SqlCommand = New SqlCommand(sql, myConnection)
myCommand.CommandType = CommandType.StoredProcedure

The syntax As New List(Of Bug) creates a new strongly typed list that can hold Bug objects. This is
part of the new generics feature in .NET 2.0 languages that allow you to quickly create custom strongly
typed lists and collections without the need to write a lot of code. This code simply creates a new List,
which is basically an array that can hold only Bug items and whose size automatically changes when
you add new items to it.

Next, the properties of the searchCriteria object are added as parameters on the SqlCommand object:

If searchCriteria IsNot Nothing Then
‘ Add the Application Id
If searchCriteria.ApplicationId <> -1 Then

429

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 429

myCommand.Parameters.AddWithValue(“@applicationId”, _
searchCriteria.ApplicationId)

End If

This code creates a new parameter called @applicationId and assigns it the value held in the Application
Id property of the searchCriteria if it has been set. This process is repeated for each of the properties
of the SearchCriteria class. Notice that the comma-separated list of values for properties like Status
and Severity are simply passed as strings to the stored procedure:

‘ Add the severity, which can be a comma separated list
If Not searchCriteria.Severity = String.Empty Then
myCommand.Parameters.AddWithValue(“@severity”, searchCriteria.Severity)

End If

Then a temporary bug is declared and the connection is opened:

Dim theBug As Bug ‘Temp bug to add to the BugList

myConnection.Open()

The bugs are retrieved from the database using a SqlDataReader that is executed with the following code:

Using myReader As SqlDataReader = _
myCommand.ExecuteReader(CommandBehavior.CloseConnection)

While myReader.Read()

‘ Add bugs retrieved from the database to the list here.
‘ This is shown later

End While
myReader.Close()

End Using

The code for the stored procedure that is used to feed this SqlDataReader is quite lengthy, so it doesn’t
appear here; rather, this section focuses on the important bits. The complete code for the BugBase appli-
cation is available on the companion CD-ROM and can also be downloaded from www.wrox.com. The
first important thing you’ll notice in the procedure is the use of the dbo.fnSplit function in some of
the JOINs:

LEFT OUTER JOIN dbo.fnSplit(@feature, ‘,’) joinFeature ON Bug.FeatureId LIKE
joinFeature.[value]

Remember that some of the SearchCriteria properties were actually comma-separated strings with
values? This is where those come into play. Here you’ll discover how it works for the Bug’s feature, but
the principle applies to each of the other properties that use the fnSplit function.

To select the bugs that are filed for one or more features, you would normally use a SQL IN statement
like this:

SELECT Bug.Id FROM Bugs WHERE Bug.FeatureId IN (1, 4, 16)

430

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 430

This selects all the bugs that are filed for either feature 1, 4, or 16. This IN statement cannot be used in a
stored procedure directly because SQL Server does not support parameterized IN filters. One way to
work around that is to create your SQL statement dynamically in the stored procedure and then use
EXEC to execute it. However, in addition to the messy code this creates, it also opens up SQL Server to all
kinds of SQL injection attacks if no additional security measures are taken.

Instead, you should use a function that accepts the comma-separated list of IDs and returns it as a table
object that can be used in a JOIN. If you think of the result of the fnSplit function as a table that has one
column called value that holds three rows with 1, 4, and 16, the JOIN becomes a lot easier to understand:

LEFT OUTER JOIN FeatureTempTable ON Bug.FeatureId LIKE
FeatureTempTable.[value]

This JOIN links the list of bugs to the Features in the temp table returned by the function.

You’ll find the dbo.fnSplit function — taken directly from Microsoft’s MSDN web site — under the
Functions node of the Database Explorer in Visual Web Developer. The function has inline comments
describing how it works.

The WHERE clause in the procedure eventually filters the bugs that match the items in the temp tables:

AND ((Bug.FeatureId LIKE joinFeature.[value]) OR (@feature IS NULL))

This statement filters the bug list to those that have a direct match to a record in the temp for Features. If
the parameter @feature is null, no filtering takes place and all records are returned.

This process is repeated for the other bug properties such as the Severity and Status, resulting in a
sophisticated filter on the bug list.

Once the procedure is done selecting the right bugs from the Bug table, it returns a result set back to the
SqlDataReader in the GetBugList method. The code then loops through each of the items in the
SqlDataReader, creates a new instance of a Bug object, sets all of its properties by filling them with data
from the database, and then adds the new Bug object to the BugList, as illustrated by the following
highlighted code:

Using myReader As SqlDataReader = _
myCommand.ExecuteReader(CommandBehavior.CloseConnection)

While myReader.Read()
theBug = New Bug(myReader.GetInt32(myReader.GetOrdinal(“Id”)))
theBug.Title = myReader.GetString(myReader.GetOrdinal(“Title”))
theBug.Description = myReader.GetString(myReader.GetOrdinal(“Description”))
‘ ... other properties are set here
theBug.Application = New NameValue(myReader.GetInt32(_

myReader.GetOrdinal(“ApplicationId”)), myReader.GetString(_
myReader.GetOrdinal(“ApplicationDescription”)))

theBug.UpdatedDateAndTime = _
myReader.GetDateTime(myReader.GetOrdinal(“UpdatedDateAndTime”))

theBugList.Add(theBug)
End While
myReader.Close()

End Using
Return theBugList

431

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 431

This code is very similar to the code that retrieved a single bug from the database. The only difference
here is that the bug itself is not returned, but that it is added to the BugList first, which is then returned
at the end of the function.

As soon as the BugList is returned from the data access layer back to the business layer, the remainder
of the code in the GetBugList method fires:

_theBugList = BugManagerDB.GetBugList(searchCriteria, _memberId)

‘ If there is more than 1 item in the list , sort it.
If _theBugList.Count > 1 Then
_theBugList.Sort(New BugComparer(sortExpression))

End If
Return _theBugList

The Sort method of the generics List class expects a generic class that implements IComparer. The
BugComparer class is such a class and implements Compare, the only method in the interface. This
method should return an Integer indicating whether an object is less than, equal to, or greater than
another object. The Compare method contains the following code:

Public Function Compare(ByVal a As Bug, _
ByVal b As Bug) As Integer Implements IComparer(Of Bug).Compare

Dim retVal As Integer = 0
Select Case _sortColumn.ToLower()
Case “id”, “”
retVal = a.Id.CompareTo(b.Id)

Case “title”
retVal = String.Compare(a.Title, b.Title, _

StringComparison.InvariantCultureIgnoreCase)
Case “feature”
retVal = String.Compare(a.Feature.Name, b.Feature.Name, _

StringComparison.InvariantCultureIgnoreCase)

‘ ... other properties are compared here

Case “updateddateandtime”
retVal = DateTime.Compare(a.CreatedDateAndTime, b.CreatedDateAndTime)

End Select

Dim _reverseInt As Integer = 1
If (_reverse) Then
_reverseInt = -1

End If

Return (retVal * _reverseInt)

End Function

The method is designed to accept two instances of a bug object, Bug a and Bug b, which are passed to
this method. The private variable_sortColumn holds the name of the property that the bugs should be
compared on. This takes place in the Select Case block where each of the comparable properties of a
bug has its own Case block. Instead of trying to figure out which property is larger than the other with

432

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 432

custom code, this code uses the Compare method of the underlying data types. Note that when
NameValue objects are compared, the Name property is used and not the Value. The user is expecting
the list to be sorted alphabetically on the name of the properties and not on the underlying value.

Finally, when all retrieving and sorting is done, the BugList is returned to the presentation layer where
it is displayed in the GridView. Displaying of the Bug objects and paging through the list is all handled
by the GridView and works similarly to other GridViews you have seen before. The only thing that
might be different is the way that the GridView displays the information for the NameValue objects:

<asp:TemplateField HeaderText=”Feature” SortExpression=”Feature”>
<ItemTemplate>
<asp:Label ID=”Label1” runat=”server” Text=’<%# Eval(“Feature.Name”) %>’ />

</ItemTemplate>
<ItemStyle Width=”130px” />

</asp:TemplateField>

The ItemTemplate holds a label with its Text property bound to the Name property of the Feature
item so the end user sees the friendly name and not just a number.

With the Reports page done, you have come full circle. Testers and developers can file new bugs in the
system. Developers can then change the bugs in the Bug Base, marking them as Closed, Fixed, or
Deferred, for example. Members of the Manager group can get detailed lists about bugs in the system on
the criteria they specify.

This also concludes the detailed explanation of the pages that make up the Bug Base. The final section of
“Code and Code Explanation” lists the other files that are used in the application and describes their
purpose.

Other Files and Folders
You have seen many of the concepts used in these files in the previous chapters, so how the files work
isn’t explained in detail here. They come with extensive inline documentation where possible, so you’re
encouraged to open the files and see how they work.

❑ GridView.skin: This file, located in the BugBase skins folder (under App_Themes), defines the
look and feel of the many GridView controls used throughout the site. Instead of defining their
looks and behavior in each of the files, a simple skin file was created so you need to define the
layout only once. If you want to change any of the colors, CssClasses, PageSize, and padding of
the GridView, you should change it right here in the .skin file. The design was abstracted even
one step further by not setting fonts and colors in the skin file directly. Instead, various styles,
such as the HeaderStyle and AlternatingRowStyle, were defined and their CssClass was set to a
class defined in the file Styles.css, discussed later.

❑ Controls: This folder contains a single user control named MemberDetails.ascx that displays
information about the current member, and the application she has chosen to work with. This
user control is added in the master page, so each page in the site is displaying its content.

❑ Css: To increase the maintainability of the site, almost all presentation details are put in separate
CSS files. This allows you to quickly change the look and feel of the site by modifying a few
properties in these files. The folder contains four files (outlined in the following table), each
serving a distinct purpose:

433

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 433

Filename Purpose

Core.css Contains the behavior for standard HTML elements, such as images and
links. It also defines the general layout of the site, such as the location of
the menu, the page header, the breadcrumb, and the content section. Refer
to the discussion of the master page to see where these classes are used.

Menu.css Defines the look and feel for the main menu of the application.

PrintStyles.css The styles in this file are applied when printing pages in the Bug Base.
This allows you to hide screen elements that don’t make sense on a
printed sheet of paper, such as the main menu.

Styles.css This CSS file contains all the custom classes used in the site. The selectors
in this file change the look and feel of form controls, error messages, and
data that is displayed in repeating controls.

❑ Help: This folder contains the Help index file, accessed by choosing Help➪Overview from the
main menu. This page provides help for the various tasks in the Bug Base. The About page dis-
plays general information about the Bug Base.

❑ SiteMap.aspx: Displays a hierarchical view of the site, using a SiteMapDataSource control
that in turn uses the file Web.sitemap, located in the root of the site. You can open the SiteMap
page by clicking the little Site Map icon on the main menu of the Bug Base.

❑ Images: This folder contains a few images that are used throughout the site, such as the Logo
and the background image for the main menu.

❑ JavaScripts: This folder contains a single file called ClientScripts.js that holds various JavaScript
functions used at the client.

❑ Maintenance: This folder allows you to make changes to the configuration of the Bug Base. You can
add new applications and features; modify the items that appear in the drop-downs for Severity,
Reproducibility, and so on; and manage Members. The following table lists each of the pages in the
Maintenance folder:

Filename Purpose

AddMember.aspx Allows you to create a new Member. By default, this member will be put
in the Tester role.

Applications.aspx Allows you to create new and change existing applications.

BugProperties.aspx Allows you to change the items for Severity, Reproducibility, and Frequency.

Default.aspx This is the homepage for the Maintenance section and provides links to
the other pages.

Features.aspx Allows you to manage the features that belong to an application.

Members.aspx Displays a list with the Members in the system and allows you to assign
members to roles and applications.

Status.aspx This page allows you to manage the Status items in the system.

434

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 434

With the discussion of the entire Bug Base application done, including the Management section and all the
additional files in the site, it’s time to find out how you can install the Bug Base so you can start using it.

Setting up the Bug Base
Setting up the Bug Base is a pretty straightforward process. You can choose between the installer that
comes with this book or manually unzip the application’s files to a folder of your choice. Using the
installer is ideal when you have IIS running on your machine and want to use it for the Bug Base. If you
plan on using the Bug Base with Visual Web Developer’s web server, the manual deployment is a better
choice.

The next two sections describe how to use to the installer and how to manually set up the application.
For both methods it’s assumed that the .NET Framework, which is an installation required for Visual
Web Developer, has already been installed. It’s also assumed that you have installed SQL Server 2005
Express edition with an instance name of SqlExpress. If you chose a different instance name, make sure
you use that name in the set up of the Bug Base.

Using the Installer
On the CD-ROM that comes with this book or from the code download for this chapter that you can get
from www.wrox.com, locate the folder Chapter 12 - Bug Base and then open the Installer folder. Inside
that folder you’ll find two files: setup.exe and BugBaseInstaller.msi. Double-click setup.exe to start the
installation. Keep clicking Next until you get a confirmation dialog that the Bug Base has been installed.
Then click Close to dismiss the installer.

On a default installation of Windows, the files that make up the web site are now available in the folder
C:\Inetpub\wwwroot\BugBase.

Before you can browse to the Bug Base, there is one more change to make. By default, if you have earlier
versions of the .NET Framework installed, new web sites created in IIS will run against that older version.
To tell IIS to use ASP.NET 2.0 instead, you need to change the settings for the virtual folder BugBase so it
runs against the .NET 2.0 Framework. Refer to Chapter 5 for detailed instructions about changing these
settings.

The Bug Base is now set up to be run under IIS. However, before you can use it there may be a few oth-
ers settings you need to configure before you can run the Bug Base application. Refer to the section
“Browsing to the Bug Base” for the next steps.

Manual Installation
Another way to set up the Bug Base is by manually copying the file from the accompanying zip file to
your local hard drive. To install manually, locate the folder Chapter 12 - Bug Base on the CD-ROM or
from the code download and then open the Source folder. In that folder you’ll find a zip file called
Chapter 12 - Bug Base.zip. Extract the contents of the zip file to a location on your hard drive (for exam-
ple, C:\Projects). You should end up with a folder similar to C:\Projects\BugBase. If you want to
open the web site in Visual Web Developer, choose File➪Open Web Site and browse to the folder where
you extracted the files.

435

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 435

Browsing to the Bug Base
If you used the installer, the Bug Base is now available at http://localhost/BugBase. If you chose
the manual installation, you can open the web site in Visual Web Developer and then press F5 to open
the site in your browser. The first time the site loads in your browser you may get a time-out error first.
The Web.config file for the Bug Base instructs the ASP.NET run time to attach the database for the Bug
Base automatically. This happens only the first time you run the application. Attaching the database
takes some time, so you could get the time-out error. Whenever that happens, just refresh the browser
window and the error will go away.

If your version of SQL Server Express has a different instance name than the default of
(local)\SqlExpress, you’ll need to modify the connection string in the Web.config file located in the
root of the Bug Base folder. Search the file for (local)\SqlExpress and replace that with the name of
your database server and instance name.

The final thing you need to do is make sure that the necessary users are available in the database. The
application comes with the five users you have seen before, but you may want to add your own users.
To add a user, follow these steps:

1. Start Visual Web Developer and choose File➪Open Web Site.

2. Browse to the location where you installed the Bug Base. The default location is C:\Inetpub\
wwwroot\BugBase. Click Open. Visual Web Developer opens the project at the specified loca-
tion. You should see the files that make up the Bug Base listed in the Solution Explorer.

3. Choose Website➪ASP.NET Configuration. A new browser window starts, showing you the Web
Site Administration Tool.

4. Click the Security tab and then click the Create User link. Type in a new username, password,
and e-mail address and assign this user to one or more roles.

5. Repeat step 4 for all the users you want to add. When you’ve added all the required users, you
can close the Web Site Administration Tool.

Now that you know all about the Bug Base, head to this book’s download page at www.wrox.com to
learn about some extensions to the application.

Summary
This chapter covered a lot of ground in working with ASP.NET 2.0 and Visual Web Developer. The Bug
Base application presented in this chapter is the most versatile and extensive application in this entire
book. In its current state, it’s ready to be used in a production environment so you and your team mem-
bers can use it to keep track of the bugs that you find in the applications you built. The introduction of
this chapter showed you how to use the Bug Base, including its role-based security features that allow
you to make a distinction in functionality between users in the different roles.

In addition to building on the knowledge you gained in previous chapters, this chapter taught you how
to do the following:

436

Chapter 12

15_749516 ch12.qxp 2/10/06 9:21 PM Page 436

❑ Work with ObjectDataSource controls to connect your ASPX pages with the business layer.
With these controls, you can create a flexible yet easy-to-maintain design based on a three-tier
architecture.

❑ Use SQL Server caching with the SqlCacheDependency class and the ASP.NET 2.0 cache to
cache data that doesn’t change often. Using this caching mechanism greatly increases the perfor-
mance of your application.

❑ Use the new Generics feature of the .NET 2.0 languages. With Generics, you can create reusable
code that works on different types you can develop yourself. By passing around a strongly
typed list of Bug instances from the business layer to the presentation layer instead of a weakly
typed DataSet, you get design-time support in Visual Web Developer. You also get improved
IntelliSense and type checking as additional benefits.

❑ Create classes that implement the IComparer interface so you can easily sort custom classes
based on the rules you can define yourself.

❑ Build complex reporting pages with custom search criteria to allow users to get exactly the data
from the system that they are looking for and present it in an easy-to-use report page.

❑ Build custom Management pages on top of the Membership and Role providers. ASP.NET
comes with its own Web Site Administration Tool that allows you to manage users, roles, and
other application settings. However, this tool does not provide access to all the features that the
Membership and Role providers have. By building pages on top of these providers, you get the
best of both worlds: pages that are very easy to build yet have all the advanced features that
your application requires.

In addition to these coding techniques, you learned how to install and configure the Bug Base application
so you can use it for your own bug tracking needs.

With the Bug Base application, you have also come to the end of this book. In the past twelve chapters you
have seen many of the new features that ASP.NET 2.0 offers out of the box. Some of those features differ
only marginally from the way that ASP.NET 1.x handled it. Others will radically change the way you
design and build your applications. The best example of this is probably the inclusion of the Membership,
Role, and Profile providers. In ASP.NET 1.x, implementing these kinds of features meant writing (and test-
ing) a lot of code and a fair amount of database design. In ASP.NET 2.0, using these features can now be as
simple as dragging a control on the design surface of the page.

With the applications that come on the companion CD-ROM, and the knowledge you gained from this
book, you are ready to use these applications as-is, or reuse parts of them in new applications you are
going to build yourself.

No matter how you use these applications, they’ll give you a head start in any future project. Have fun
on your ASP.NET 2.0 journey!

437

The Bug Base

15_749516 ch12.qxp 2/10/06 9:21 PM Page 437

15_749516 ch12.qxp 2/10/06 9:21 PM Page 438

In
de

x

Index

SYMBOLS
@ (at symbol), 177, 187
“ (double quote), 265
(hash mark), 340
% (percent sign), 265
‘ (single quote), 265

A
<a> tag, 291
About link

Wrox Chat Server, 74
Wrox Survey Engine, 101

About Me link (Wrox Photo Album), 206–207
account creation, Appointment Booking System, 314
active bugs, Bug Base application, 395
Add Collection link (Wrox Photo Album), 211
Add() method
ContactCollection class, 11
DiaryEntryCollection class, 14
DiaryEventCollection class, 16
ShoppingCart class, 281

Add New Contact link (Online Diary), 4–5
Add New Event link (Online Diary), 4
Add Survey Wizard (Wrox Survey Engine), 105–108
AddEditContent page, Wrox CMS, 154
AddressLine property, 10
AddText control, 379, 381, 384
AddTextToImage() method, 357, 382
AddWithValue() method, 254, 304
Admin link

Wrox CMS, 134
Wrox File Share, 39–40
Wrox Photo Album, 206
Wrox Survey Engine, 101, 103–104

Admin.aspx WebForm, 225–227
Admin.master file, 222

AdminMaster.master file, 142–145
Ajax technology, 75, 254
Alignment property, 383
AllowedExtensions property, 359, 368
AllowPaging property, 147, 294
AllowReturn property, 335
AllowSorting property, 147
AlternateView object, 386
anchor members, 259
AND statement, 265
Answer property, 240
AppConfiguration class

Appointment Booking System, 324–325
ConnectionStringSettings property, 180
Customer Support Site, 247–248
EmailFrom property, 180
EmailTo property, 180
Greeting Cards application, 361–362
Wrox WebShop, 288

AppendDataBoundItems property, 418
application configuration, Appointment Booking Sys-

tem, 350
Application property, 397
application setup, Online Diary, 34–35
Application_Error event, 198, 200
Appointment Booking System

account creation, 314
AppConfiguration class, 324–325
application configuration, 350
Appointment class, 318–319
AppointmentManager class, 320–321
App_Themes folder, 326
Availability Checker, 314–315, 327
Booking Object Selection Wizard, 315–316
booking objects, managing, 344–345
BookingObject class, 316–317
BookingObject table, 323
BookingObjectManager class, 317–318

16_749516 bindex.qxp 2/10/06 9:22 PM Page 439

Appointment Booking System (continued)
business layer, 316–320
Calendar control, 328
CheckAppointment property, 336, 339
Conference Rooms link, 313
configuration information, saving, 342–344
Controls folder, 326
Css folder, 326
data access layer, 322–323
data model, 323–324
double opt-in technique, 314, 340
End Time settings, 312–313
EndTime property, 327–328
Helpers class, 325
HourPicker control, 339–340
Images folder, 326
installation, 349
JavaScripts folder, 326
maintenance section, 311
Management link, 312
master pages, 326
overview, 311
public end-user section, 311
Require Comments setting, 312
root files, 325–327
Sign Up page, 340–342
Start Time settings, 312–313
StartTime property, 327
StaticFiles folder, 326
TimeSheet control, 328–332
viewing appointments, 345–349
Weekdays class, 321
Wizard control, 334–336, 338–339

Appointment class, 318–319
AppointmentManager class, 320–321
AppSettings class, 343
App_Themes folder (Appointment Booking System),

326
ArrayList control, 380
Articles link (Wrox CMS), 134
aspnet_Users table, 7
at symbol (@), 177, 187
AttachDbFileName attribute, 411
Authenticate event, 182–183
AutoPostBack property, 426
Availability Checker (Appointment Booking System),

314–315, 327
AvailableOnWeekDays property, 317, 344

B
backing variables, 316
Bin folder, Customer Support Site, 250
bitmaps, 371–372, 376, 383
blog. See Wrox Blog
BlogEntries user control, 191–193
BlogEntriesFilter user control, 188–190
BlogEntry class, 171, 178
BlogManager class, 172–173
BlogManagerDB class, 176–177

blue background diary entries, Online Diary, 3
BodyFileName attribute, 340
bold fonts, 381
booking objects

Booking Object Selection Wizard, 315–316
BookingObject class, 316–317, 344
BookingObject table, 323
BookingObjectId property, 319
BookingObjectManager class, 317–318
overview, 345

BoundField control, GridView control, 148
Brush object, 383
btnFinish control, 367
btnFinish_Click event, 366
btnNewImage control, 367
btnUpload control, 367
Bug Base application

active bugs, 395
Bug class, 397–398
BugComparer class, 400
BugManager class, 399–400
BugManagerDB class, 407–408
Bugs menu, 393
business layer, 397–401
CommentManager class, 400
CommentManagerDB class, 408–409
Controls folder, 433
Css folder, 433
data access layer, 403–407
deferred bugs, 395
File New Bug option, 393
filing bugs, 413–417
fixed bugs, 395
Frequency Items, 395
GridView.skin file, 433
Help menu, 393, 434
home page, 392–393
Images folder, 434
inactive bugs, 395
installation, 435
JavaScripts folder, 434
ListManager class, 400–401
ListManagerDB class, 409–410
Maintenance menu, 393, 434
master pages, 412–413
member accounts, 392
MemberManager class, 402
MemberManagerDB class, 410
NameValue class, 402
overview, 391
Reporting menu, 393, 395
Reproducibility Items, 395–396
root files, 410–413
SearchCriteria class, 402–403
searching bugs, 423–427
Severity Items, 395–396
Status Items, 395
user account setup, 436
viewing bugs, 428–432

440

Appointment Booking System (continued)

16_749516 bindex.qxp 2/10/06 9:22 PM Page 440

Bug class, 397–398
BugComparer class, 400
BugManager class, 399–400
BugManagerDB class, 407–408
Bugzilla Web site, 391
business layer

Appointment Booking System, 316–320
Bug Base application, 397–401
Customer Support Site, 236–239
Online Diary, 8–12
Wrox Blog, 170–174
Wrox CMS, 137–138
Wrox WebShop, 277–281

C
Calendar control

Appointment Booking System, 328
Online Diary, 24–26

calendar display, Wrox Blog, 169, 189
callbacks

Callback Manager script, 76
GetCallbackEventReference() method, 76
GetCallbackResult() method, 76–77
ICallbackEventHandler interface, 76
onclick event, 77
RaiseCallbackEvent() method, 76–77
ReceiveServerData() method, 77
sending messages using, 75–78

Cancel property, 335
Case blocks, 268
categories

child, 260
parent, 244, 253, 258
Wrox CMS, 146–150

Categories page, Customer Support Site, 268
Category class, 241
Category table

Customer Support Site, 246–247
Wrox Blog, 179
Wrox Chat Server, 79
Wrox WebShop, 285

CategoryDB class, 243–244
CategoryId property, Product class, 278
Center value, alignment, 383
ChangeMemberApplicationBinding() method, 410
ChangePassword control, 18
chat server. See Wrox Chat Server
ChatRoom class, 81–82, 85–86
ChatRoom.aspx WebForm, 90–92
ChatRoomDB class, 82–83, 86–87
ChatWindow.aspx WebForm, 92–94
CheckApplicationState() method, 418
CheckAppointment property, 336, 339
CheckBoxList value, 344
child categories, 260
City property, 10

classes
Appointment, 318–319
AppointmentManager, 320–321
AppSettings, 343
BlogEntry, 172–173, 178
BlogManager, 172–173
BlogManagerDB, 176–177
BookingObject, 316–317, 344
BookingObjectManager, 317–318
Bug, 397–398
BugComparer, 400
BugManager, 399–400
BugManagerDB, 407–408
Category, 241
CategoryDB, 243–244
ChatRoom, 81–82, 85–86
ChatRoomDB, 82–83, 86–87
CommentManager, 400
CommentManagerDB, 408–409
Config, 54, 56, 83–85
Contact, 8–10
ContactCollection, 10–11
Content, 137–138, 155
ContentBase, 236–237
ContentDB, 139, 156
Customer, 283–284
DBProviderFactories, 186
DiaryEntry, 11–13, 26
DiaryEntryCollection, 13–14
DiaryEvent, 14–16, 29
DiaryEventCollection, 16–17
Download, 239
DownloadDB, 243
EmailContent, 52–53
EventArgs, 365
FAQ, 239–240
FaqDB, 243
FileHandlingEventArgs, 356, 361
Font, 382
FontFamily, 380
FontStyle, 381
Graphics, 376
Helpers, 325
ImageButton, 381
Imaging, 356–358
KeyValueConfigurationElement, 343
LinkedResource, 386
ListManager, 400–401
ListManagerDB, 409–410
MemberManager, 402
MemberManagerDB, 410
NameValue, 402
OnlineDiary, 8
OrderedProduct, 279–280
Photo, 218–219
PhotoCollection, 219
PhotoDB, 219–221
Point, 382

441

classes

In
de

x

16_749516 bindex.qxp 2/10/06 9:22 PM Page 441

classes (continued)
Product, 237–238, 277–279
ProductDB, 242
Resource, 53, 58–59
resourceDB, 59–62
SearchCriteria, 402–403
ShopManager, 281–283
ShopManagerDB, 287–288
ShoppingCart, 280–281
SqlCacheDependency, 404, 419
Survey, 118–119
SurveyBase, 117–118
SurveyDB, 120–121
Survey.vb, 122–123
UploadHandler, 358–361, 368
UserManager, 173–174
UserManagerDB, 177
Utilities, 42–43, 55
WebConfigurationManager, 343
Weekdays, 321

Clear() method, ShoppingCart class, 281
Click event, WebForms, 63, 262
CMS. See Wrox CMS
collections, Wrox Photo Album, 207, 217
color

cropped images, 375
fonts, 382

columns
sorting, 149
Wrox CMS, 145

Command and Parameter Editor, 151
CommandField control, GridView control, 148–149
CommandName property, 154, 268
CommandText property, 415
CommandType property, 415
CommentManager class, 400
CommentManagerDB class, 408–409
Comments property, Appointment class, 319
Commit() method, 305
Common Table Expressions (CTE), 233, 257, 259
composite applications, 110
Conference Rooms link (Appointment Booking System),

313
Config class

Wrox Chat Server, 83–85
Wrox File Share, 54, 56
Wrox Survey Engine, 121, 123–124

configuration information, Appointment Booking Sys-
tem, 342–344

Configuration tool, 51, 116
ConnectionString() method
Config class, 83, 121
discussed, 54
PhotoDB class, 220

ConnectionStringSettings property, 180
Contact class, 8–10
contact management, Online Diary, 32–34
Contact Management page (Online Diary), 4–5, 32–34
Contact Me link (Wrox Photo Album), 206–207

Contact table, Online Diary, 7
Contact Us link

Wrox Chat Server, 74
Wrox Survey Engine, 101

ContactCollection class, 10–11
ContactID property, 10
Content class, 137–138, 155
content management system. See Wrox CMS
content types, Wrox CMS, 134
ContentBase class, 236–237
ContentDB class, 139, 156
ContentPlaceHolder control, 222, 413
ContentTypeDescription attribute, 144
Continue Shopping button (Wrox WebShop), 276
ControlParameter parameter, 150
controls
AddText, 379, 381, 384
ArrayList, 380
BlogEntries, 191–193
BlogEntriesFilter, 188–190
BoundField, 148
btnFinish, 367
btnNewImage, 367
btnUpload, 367
Calendar, 24–26, 328
ChangePassword, 18
CommandField, 148–149
ContentPlaceHolder, 222, 413
CreateUserText, 19
CreateUserUrl, 19
CreateUserWizard, 18–19, 21–22
currentsurvey, 130
DataList, 191, 212
DataObjectSource, 32
DeleteCommand, 149, 226
DestinationPageUrl, 225
DropDownList, 373
FileUpload, 41–42, 368
FileUpload1, 367
FormView, 152
HourPicker, 339–340
Hyperlink, 159
imgUploaded, 367
Literal, 161, 328
litFinishButtonText, 367
Login, 18–19, 51, 63–64
LoginName, 18
LoginStatus, 66, 128
LoginView, 18
Menu, 222
MultiView, 339, 364
ObjectDataSource, 25–26, 29, 253–254
PagedDataSource, 294
PasswordRecovery, 18, 23, 293
PasswordRecoveryText, 19, 225
PasswordRecoveryUrl, 19, 225
Repeater, 346, 348
RequiredFieldValidator, 336, 367
RotateFlipImage, 372

442

classes (continued)

16_749516 bindex.qxp 2/10/06 9:22 PM Page 442

SelectImage, 365
SiteMapDataSource, 88, 222
SiteMapPath, 222
SiteMenu, 143–144
TemplateField, 148–149
TextBox, 41
TimeSheet, 328–332
TreeView, 88, 209
UpdateCommand, 149, 226
validation, 158
View, 364
Wizard, 334–336, 338–339

Controls folder
Appointment Booking System, 326
Bug Base application, 433
Customer Support Site, 250–251

Count property, ShoppingCart class, 280
Create New Entry button (Wrox Blog), 169
CreateCategory() method, 241, 244
CreateDateandTime property, 397
CreateListItems() method, 339
CreateMemberId property, 398
CreateParameter() method, 187
CreateUserText control, 19
CreateUserUrl control, 19
CreateUserWizard control, 18–19, 21–22
CropImage() method, 357
cropped images, 374–378
Css folder

Appointment Booking System, 326
Bug Base application, 433
Customer Support Site, 251

CTE (Common Table Expressions), 233, 257, 259
CurrentPageIndex property, 294
currentsurvey user control, 130
CurrentTheme() method, 54, 83, 121
Customer class, Wrox WebShop, 283–284
Customer Support Site
AppConfiguration class, 247–248
Bin folder, 250
business layer, 236–239
Categories page, 268
Category class, 241
Category table, 246–247
CategoryDB class, 243–244
content management, 268–269
ContentBase class, 236–237
Controls folder, 250–251
Css folder, 251
data access layer, 241–244
data model, 244–246
discussed, 233, 235
Download class, 239
Download table, 245–246
DownloadDB class, 243
Downloads page, 256–260
FAQ class, 239–240
Faq table, 246
FaqDB class, 243
FCKeditor feature, 251

how to use, 270–271
Images folder, 251
installation, 269–270
list pages, 268–269
master pages, 249–250
Product class, 237–238
Product Locator page, 251–255
Product table, 245
ProductDB class, 242
root files, 248–251
searches, 263–265
stored procedures, 247
user-defined functions, 247
UserFiles folder, 251

D
data access layer

Appointment Booking System, 322–323
Bug Base application, 403–407
Customer Support Site, 241–244
Online Diary, 6–8
Wrox Blog, 174–177
Wrox CMS, 139–140
Wrox WebShop, 284–287

data model
Appointment Booking System, 323–324
Customer Support Site, 244–246
Wrox Chat Server, 78–81
Wrox File Share, 44–45
Wrox Photo Album, 216–217
Wrox Survey Engine, 112–115
Wrox WebShop, 284

data source controls, Wrox CMS, 136–137
DataBind() method, 190, 344
DataKeyNames property, 147
DataList control, 191, 212
DataObjectSource control, 32
DataSourceID attribute, 26
DataTextField property, 380
DataValueField property, 380
DBProviderFactories class, 186
declarative expression, 328
Default.aspx file

Appointment Booking System, 326
Customer Support Site, 248
Wrox Chat Server, 88–90
Wrox File Share, 62–63
Wrox Survey Engine, 126
Wrox WebShop, 292

deferred bugs, Bug Base application, 395
Delete button, Wrox CMS, 153
Delete() method
FaqDB class, 243
Product class, 238
ProductDB class, 242
Survey class, 118
SurveyDB class, 120

DeleteCommand control, GridView control, 149, 226
DeleteContact() method, 9

443

DeleteContact () method

In
de

x

16_749516 bindex.qxp 2/10/06 9:22 PM Page 443

DeleteEvent() method, 16, 30
DeleteMethod attribute, 298
DeleteParameters property, 30
DeleteQuestion() method
Survey class, 118
SurveyDB class, 120

deleting Online Diary events, 4, 16, 30–31
description field (Add Survey Wizard), 107
Description property, Product class, 278
DestinationPageUrl control, 225
destRect parameter, 378
Diary table, Online Diary, 7
Diary Text box (Online Diary), 4
DiaryEntry class, 11–13, 26, 29
DiaryEntry table, Online diary, 7
DiaryEntryCollection class, 13–14
DiaryEvent class, 14–16
DiaryEvent table, Online Diary, 7
DiaryEventCollection class, 16–17
DisableCreatedUser property, 340
domain tables, 402
double opt-in technique, Appointment Booking System,

314, 340
double quote (“), 265
Download class, 239
Download.aspx WebForm, 64–65
DownloadDB class, 243
Downloads page, Customer Support Site, 256–260
DrawImage() method, 371
DrawRectangle() method, 357, 375–377
DropDownList control, 373
dynamic searches, 263–264

E
E-commerce. See Wrox WebShop
Edit button

Wrox CMS, 153–154
Wrox WebShop, 299

Edit Event page (Online Diary), 4
Edit Photos link (Wrox Photo Album), 209
Editphotos.aspx WebForm, 227–228
Else clause, 333
e-mail

address entry, Wrox Chat Server, 73
Config class, 54
Contact table, 44
Email table, 44
EmailContent class, 52–53
MailAddress attribute, 386
Resource class, 53, 58–59
Resource table, 45
resourceDB class, 59–62
sending with embedded images, 384–386
SendingMail event, 23
SMTP server configuration, 42
text content, 46–47
upsert methodology, 48–49
Utilities class, 42–43

Web.config file, 56
WebForms, 62–65
Wrox File Share, 42–43

Email property, 10
EmailFrom property, 180
EmailFromSelected() method, 54
EmailSubject() method, 54
EmailTo property, 180
embedded images, sending e-mail with, 384
EnableViewState property, 427
Encrypt event, 184
end time

End Time settings (Appointment Booking System),
312–313

EndTime property, 317, 327–328
Online Diary events, 4

EndDate property, Appointment class, 319
entries, Online Diary

adding, 4
creating, editing, and viewing, 26–29
updating, 29

Entry Title text box (Online Diary), 4
EntryDate property, 13
EntryText property, 13
EntryTitle property, 13
errors. See also Bug Base application
Application_Error event, 198, 200
error handling, Wrox Blog, 198–200
GetLastError() method, 199
page cannot be displayed message, 165
time-out, 164

Eval() method, 160–161, 298
EventArgs class, 365
EventDate property, 16
EventDescription property, 16
EventDuration property, 16
EventName property, 16
events, Online Diary

adding, deleting, and editing, 4
calendar view, 24–26
deleting, 16, 30–31
description, 4
end time, 4
linking to contacts, 5
start time, 4

EXEC command, 267–268
ExecuteNonQuery value, 423
ExecuteReader() method, 156
Extension property, 359

F
factory patterns, 175
Families property, 380
FAQs (Frequently Asked Questions)

Customer Support Site, 233, 262–265
FAQ class, 239–240
Faq table, Customer Support Site, 246
FaqDB class, 243

444

DeleteEvent () method

16_749516 bindex.qxp 2/10/06 9:22 PM Page 444

Far value, alignment, 383
FCKeditor editor feature, 157–158, 251
Feature property, 398
File New Bug option (Bug Base application), 393
file share. See Wrox File Share
file structure

Online Diary, 17–18
Wrox File Share, 43

FileExists() method, 360
FileHandlingEventArgs class, 356, 361
FileName property, 359, 366
fileNameIn parameter, 358
fileNameOut parameter, 358, 370
files, uploading, 367–369
FileUpload control, 41–42, 368
FileUpload1 control, 367
Fill() method, 126, 415
FinalizeOrder() method, 283, 302–303
Finally block, 296, 372, 384
FinishButtonClick event, 22, 338
FinishButtonText property, 366
FirstName property, 10
fixed bugs, Bug Base application, 395
flicker, 254
flipping images, 372–374
folders

App_Themes, 326
Bin, 250
Controls, 250–251, 326, 433
Css, 251, 326, 433
Images, 251, 326, 434
JavaScripts, 326, 434
Management, 273–274, 306
Shop, 274, 293
StaticFiles, 326
UserFiles, 251

Font class, 382
FontFamily class, 380
FontStyle class, 381
footer user control

Wrox Chat Server, 95
Wrox File Share, 66
Wrox Survey Engine, 128

form elements, security model, 51–52
FormView control, 152
Frequency Items, Bug Base application, 395
Frequency property, 398
Frequently Asked Questions. See FAQs
FROM clause, 258
FromImage() method, 371
Full Text Indexing technology, 262

G
GDI+ (Graphics Device Interface), 351–352
GenerateDateFolder property, 360
GenerateUniqueFileName property, 360
generics, 295

Get() method
FaqDB class, 243
Product class, 238
ProductDB class, 242
Survey class, 118
SurveyDB class, 120

GetAllUsers() method, 426
GetApplicationDescription() method, 401, 409
GetApplicationItems() method, 401, 409
GetBaseException() method, 199
GetBlogEntries() method
BlogManager class, 172–173
BlogManagerDB class, 176

GetBug() method, 399, 408, 420
GetBugList() method, 399, 408
GetCallbackEventReference() method, 76
GetCallbackResult() method, 76–77, 93
GetCategories() method
BlogManager class, 173
BlogManagerDB class, 177

GetCategoryList() method, 241, 244
GetCategoryPath() method, 241, 244
GetChatRoomList() method
ChatRoom class, 82, 87
ChatRoomDB class, 83, 86

GetChildRows() method, 331
GetColors() method, 357
GetCommentList() method, 400, 409
GetContactsByFirstLetter() method, 9
GetContactsByFirstLetterAsCollection()

method, 10
GetCredentials() method, 55
GetCurrentServerRoot() method, 341
GetCurrentSurvey() method
Survey class, 118
SurveyDB class, 120

GetDaysInMonthWithEntries() method, 12, 15
GetDiaryEntriesByDate() method, 12
GetDiaryEntriesByDateAsCollection()

method, 13
GetDiaryEntriesRecentlyChanged() method, 13
GetDiaryEventsByDate() method, 15, 29
GetDiaryEventsByDateAsCollection()

method, 15
GetDiaryIdFromUserName() method, 8
GetEmailBody() method, 53, 60
GetEmailContent() method, 53
GetFaqList() method, 240, 243
GetFeatureItems() method, 401, 409
GetFirstImage() method, 220
GetFontFamilies() method, 357
GetImageFormat() method, 357
GetImageHash() method, 357
GetImageSize() method, 358, 370
GetItem() method
Content class, 155
ContentDB class, 156
discussed, 255

445

GetItem () method

In
de

x

16_749516 bindex.qxp 2/10/06 9:22 PM Page 445

GetLastError() method, 199
GetListItems() method, 409
GetMessagesForChatRoom() method
ChatRoom class, 82
ChatRoomDB class, 83

GetNames() method, 373
GetOrdinal() method, 157
GetProduct() method, 255, 296
GetProductList() method
Product class, 238
ProductDB class, 242

GetQuestionIDs() method, 119
GetQuestionIDsForSurvey() method, 120
GetQuestions() method, 119
GetResourceFileName() method, 46, 53
GetRotateTypes() method, 358, 373
GetSmtpSettings() method, 55
GetSurveyList() method
Survey class, 119
SurveyDB class, 120

GetUserRoles() method, 183
Global.asax file

Appointment Booking System, 326
Bug Base application, 413
Customer Support Site, 248
Wrox Blog, 184–185
Wrox WebShop, 289

Golding, Tod (Professional .NET 2.0 Generics), 295
Graphics class, 376
Graphics Device Interface (GDI+), 351–352
Greeting Cards application

alignment values, 383
AppConfiguration class, 361–362
Brush object, 383
configuration, 387–390
cropped images, 374–378
embedded images, sending e-mail with, 384–386
files, uploading, 367–369
host page, 362–366
image format, 352
Imaging class, 356–358
installation, 387
links, 352–354
mail server configuration, 389–390
overview, 352
resizing images, 369–372
rotating and flipping images, 372–374
security setting changes, 387–389
text, adding to images, 379–383
Toolkit, 355
UploadHandler class, 358–361

GridView control
BoundField control, 148
CommandField control, 148–149
contact management, 32–33
DeleteCommand control, 149, 226
FormView control and, 152
TemplateField control, 148–149
UpdateCommand control, 149, 226

GridView.skin file, Bug Base application, 433

H
hash mark (#), 340
header user control

Wrox Chat Server, 95
Wrox File Share, 65–66
Wrox Survey Engine, 127–128

Height property, 375–377
Help menu (Bug Base application), 393, 434
Helpers class, Appointment Booking System, 325
Home button (Wrox WebShop), 274
Home link

Wrox Chat Server, 74
Wrox CMS, 134
Wrox Survey Engine, 101

home page (Bug Base application), 392–393
host page (Greeting Cards application), 362–366
hosted web site installation

Wrox Chat Server, 96
Wrox File Share, 67
Wrox Photo Album, 230–231
Wrox Survey Engine, 131

HourPicker control, 339–340
HoursToShow() method, 83
httpDownloadPath() method, 54
Hyperlink control, 159

I
ICallbackEventHandler interface, 76
Id property
Appointment class, 319
BookingObject class, 317
Bug class, 398
OrderedProduct class, 279
Product class, 278

IF/THEN statement, 255
IIS configuration, 162–163
image parameter, 378
ImageButton class, 381
ImageFinalized event, 365
ImageFormat parameter, 370
images

adding text to, 379–383
cropping, 374–378
flipping, 372–374
resizing, 369–372
rotating, 372–374
sending e-mail with, 384–386
storing and rendering, 212

Images folder
Appointment Booking System, 326
Bug Base application, 434
Customer Support Site, 251

ImageUrl property, 238
Imaging class, 356–358
 tag, 384
imgUploaded control, 367
IN statement, 258

446

GetLastError () method

16_749516 bindex.qxp 2/10/06 9:22 PM Page 446

inactive bugs, Bug Base application, 395
initialize event, Default.aspx WebForm, 62–63
InitializeControl() method, 372–373, 380
InsertCollection() method, 220
InsertComment() method, 400, 409
InsertDiary() method, 8
InsertNewDiaryEntry() method, 28
InsertPhoto() method, 220
InsertUpdateBug() method, 399, 408
installation

Appointment Booking System, 349
Bug Base application, 435
Customer Support Site, 269–270
Greeting Cards application, 387
Wrox Blog, 200–201, 203
Wrox Chat Server, 96
Wrox CMS, 162
Wrox File Share, 67
Wrox Photo Album, 231–233
Wrox Survey Engine, 131
Wrox WebShop, 307

instance of type, 252
IsExtensionAllowed() method, 360
IsValid property, 329, 336
italicized fonts, 381
Item property
ContactCollection class, 11
DiaryEntryCollection class, 13
DiaryEventCollection class, 17

ItemInserting event, 417
Items property, ShoppingCart class, 280
ItemUpdating event, 417

J
JavaScripts folder

Appointment Booking System, 326
Bug Base application, 434

joins, 416

K
KeyValueConfigurationElement class, 343
Keywords property, 238

L
LastName property, 10
LEFT OUTER JOIN value, 416
Left property, 375–377
Left to Right (LTR) language, 383
 tag, 412
LinkedResource class, 386
list pages, Customer Support Site, 268–269
ListManager class, 400–401
ListManagerDB class, 409–410
Literal controls, 161, 328
litFinishButtonText control, 367

load time, improved performance, 253–254
LoadData() method, 294, 329, 347
local developer installation

Wrox Chat Server, 96–97
Wrox File Share, 68
Wrox Photo Album, 231–232
Wrox Survey Engine, 131–132

log on screen (Online Diary), 1–2
logging, Wrox Blog, 198–200
Login button (Wrox WebShop), 274
Login control

Online Diary, 18–19
security model, 51
WebForms, 63–64

Login link (Wrox CMS), 134
Login.aspx file

Web.config file, 63–64
Wrox Blog, 181–183
Wrox CMS, 146
Wrox Photo Album, 224–225
Wrox Survey Engine, 126
Wrox WebShop, 292–293

LoginName control, 18
LoginStatus control, 66, 128
LoginView control, 18
LTR (Left to Right) language, 383

M
mail server configuration, Greeting Cards application,

389–390
MailAddress attribute, 386
MailDefinition attribute, 340
Maintenance menu (Bug Base application), 393
maintenance section (Appointment Booking System), 311
Manage Your Contacts link (Online Diary), 4
Management folder (Wrox WebShop), 273–274, 306
Management link (Appointment Booking System), 312
master pages

Appointment Booking System, 326
Bug Base application, 412–413
Customer Support Site, 249–250
discussed, 222
Wrox WebShop, 291–292

MaxImageHeight property, 362
MaxImageWidth property, 362
member accounts, Bug Base application, 392
MemberManager class, 402
MemberManagerDB class, 410
membership levels, aspnet_Users table, 7
Menu control, 222
Message table, Wrox Chat Server, 80
<meta> tag, 249–250
methods
Add(), 11, 14, 16, 281
AddTextToImage(), 357, 382
AddWithValue(), 254, 304
ChangeMemberApplicationBinding(), 410

447

methods

In
de

x

16_749516 bindex.qxp 2/10/06 9:22 PM Page 447

methods (continued)
CheckApplicationState(), 418
Clear(), 281
Commit(), 305
ConnectionString(), 54, 83, 121, 220
CreateCategory(), 241, 244
CreateListItems(), 339
CreateParameter(), 187
CropImage(), 357
CurrentTheme(), 54, 83, 121
DataBind(), 190, 344
Delete(), 118, 120, 238, 242–243
DeleteContact(), 9
DeleteEvent(), 16, 30
DeleteQuestion(), 118, 120
DrawImage(), 371
DrawRectangle(), 357, 375–377
EmailFromSelected(), 54
EmailSubject(), 54
Eval(), 160–161, 298
ExecuteReader(), 156
FileExists(), 360
Fill(), 126, 415
FinalizeOrder(), 283, 302–303
FromImage(), 371
Get(), 118, 120, 238, 242–243
GetAllUsers(), 426
GetApplicationDescription(), 401, 409
GetApplicationItems(), 401, 409
GetBaseException(), 199
GetBlogEntries(), 172–173, 176
GetBug(), 399, 408, 420
GetBugList(), 399, 408
GetCallbackEventReference(), 76
GetCallbackResult(), 76–77, 93
GetCategories(), 173, 177
GetCategoryList(), 241, 244
GetCategoryPath(), 241, 244
GetChatRoomList(), 82–83, 86–87
GetChildRows(), 331
GetColors(), 357
GetCommentList(), 400, 409
GetContactsByFirstLetter(), 9
GetContactsByFirstLetterAsCollection(), 10
GetCredentials(), 55
GetCurrentServerRoot(), 341
GetCurrentSurvey(), 118, 120
GetDaysInMonthWithEntries(), 12, 15
GetDiaryEntriesByDate(), 12
GetDiaryEntriesByDateAsCollection(), 13
GetDiaryEntriesRecentlyChanged(), 13
GetDiaryEventsByDate(), 15, 29
GetDiaryEventsByDateAsCollection(), 15
GetDiaryIdFromUserName(), 8
GetEmailBody(), 53, 60
GetEmailContent(), 53
GetFaqList(), 240, 243
GetFeatureItems(), 401, 409
GetFirstImage(), 220

GetFontFamilies(), 357
GetImageFormat(), 357
GetImageHash(), 357
GetImageSize(), 358, 370
GetItem(), 155–156, 255
GetLastError(), 199
GetListItems(), 409
GetMessagesForChatRoom(), 82–83
GetNames(), 373
GetOrdinal(), 157
GetProduct(), 255, 296
GetProductList(), 238, 242
GetQuestionIDs(), 119
GetQuestionIDsForSurvey(), 120
GetQuestions(), 119
GetResourceFileName(), 46, 53
GetRotateTypes(), 358, 373
GetSmtpSettings(), 55
GetSurveyList(), 119–120
GetUserRoles(), 183
HoursToShow(), 83
httpDownloadPath(), 54
InitializeControl(), 372–373, 380
InsertCollection(), 220
InsertComment(), 400, 409
InsertDiary(), 8
InsertNewDiaryEntry(), 28
InsertPhoto(), 220
InsertUpdateBug(), 399, 408
IsExtensionAllowed(), 360
LoadData(), 294, 329, 347
MyClickEventHandler(), 90–91
New(), 118–119, 238, 398
OpenWebConfiguration(), 343
PageTitle(), 54, 83, 121
Page.Validate(), 422
RaiseCallbackEvent(), 76–77, 90
RaiseEvent(), 365
ReceiveServerData(), 77, 93
Remove(), 11, 14, 16, 281
Replace(), 265, 341
ResizeImage(), 358, 370
RotateFlip(), 374
RotateImage(), 358, 373
SaveBlogEntry(), 173, 177
SaveEmailContent(), 53
SaveMessage(), 81, 83, 86
SaveQuestion(), 119, 121
SaveResource(), 53
SaveResponses(), 119, 121
SaveSurvey(), 119
SaveSurveyAsCurrent(), 119, 121
SendEmail(), 55
SetMemberId(), 414
shared, 8, 252
ShareLocalFolderPath(), 54
SmtpServer(), 54
Split(), 266
SqlConnection(), 221

448

methods (continued)

16_749516 bindex.qxp 2/10/06 9:22 PM Page 448

ToString(), 199, 343
type, 252
Update(), 281
UpdateDiaryEntry(), 29
UploadFile(), 360, 368
ValidateAllSteps(), 336
ValidateStep(), 335
VerifyingUser(), 293

MobilePhone property, 10
MoveIncrease property, 375
multiple choice survey example, Wrox Survey Engine,

102–103
MultiView control, 339, 364
MyClickEventHandler() method, 90–91

N
name field (Add Survey Wizard), 105–107
NameValue class, 402
naming conventions, stored procedures, 114–115
navigation user control

Wrox Chat Server, 95–96
Wrox File Share, 66–67
Wrox Survey Engine, 128–129

Near value, alignment, 383
nested Repeater, 346, 348
New constructor
Contact class, 9
DiaryEntry class, 11
DiaryEvent class, 14

New Contact page (Online Diary), 5
New() method
Bug class, 398
Product class, 238
Survey class, 119
SurveyBase class, 118

NextButtonClick event, 335

O
object binding, 110–111
ObjectDataSource control, 25–26, 29, 253–254
onclick event, 77
Online Diary

Add New Contact link, 4–5
Add New Event link, 4
application setup, 34–35
blue background entries, 3
business layer, 8–12
Calendar control, 24–26
Contact class, 8–10
Contact Management page, 4–5, 32–34
Contact table, 7
ContactCollection class, 10–11
data access layer, 6–8
Diary table, 7
Diary Text box, 4

DiaryEntry class, 11–13, 26, 29
DiaryEntry table, 7
DiaryEntryCollection class, 13–14
DiaryEvent class, 14–16
DiaryEvent table, 7
DiaryEventCollection class, 16–17
Edit Event page, 4
entries, adding, 4, 26–29
Entry Title text box, 4
event entries, 4
events, creating, editing, and viewing, 29
events, deleting, 30–31
file structure, 17–18
log on screen, 1–2
Login control, 18–19
Manage Your Contacts link, 4
New Contact page, 5
OnlineDiary class, 8
password reminder, 23
red text events, 3
registration process, 1–2, 18–19
Save Entry button, 4
security controls, 2, 18
shared methods, 8
Sign Up page, 1–2
username and password, 1–2

OnlineDiary class, 8
OpenBook theme, Wrox Photo Album, 215
OpenWebConfiguration() method, 343
OR statement, 265
OrderBase table, Wrox WebShop, 286
OrderDetail table, Wrox WebShop, 286
OrderedProduct class, 279–280
orders, finalizing (Wrox WebShop), 301–305
outer Repeater, 346–347
OverWriteExistingFile property, 360

P
page cannot be display error, 165
page load time, improving, 253–254
PagedDataSource control, 294
Page_Init event, 31
Page_Load event, 26, 33, 64, 90, 92
PageSize property, 294
PageTitle() method, 54, 83, 121
Page.Validate() method, 422
parameters
ControlParameter, 150
destRect, 378
fileNameIn, 358
fileNameOut, 358, 370
image, 378
ImageFormat, 370
resizeFactor, 370
SelectedValue, 253
ShowDeleteButton, 153
ShowEditButton, 153

449

parameters

In
de

x

16_749516 bindex.qxp 2/10/06 9:22 PM Page 449

parameters (continued)
srcHeight, 378
srcUnit, 378
srcWidth, 378
srcX, 378
srcY, 378

parent categories, 244, 253, 258
PasswordRecovery control, 18, 23, 293
PasswordRecoveryText control, 19, 225
PasswordRecoveryUrl control, 19, 225
passwords
ChangePassword control, 18
Online Diary, 1–2
PasswordRecovery control, 23
reminders, 23

percent sign (%), 265
performance monitors, 111
photo album. See Wrox Photo Album
Photo class, 218–219
Photo table, Wrox Photo Album, 217
PhotoCollection class, 219
PhotoDB class, 219–221
Photos.aspx WebForm, 223–224
PictureUrlLarge property, Product class, 278
PictureUrlMedium property, Product class, 278
PictureUrlSmall property, Product class, 278
Point class, 382
PostalCode property, 10
postback, 34
Price property, Product class, 278
Priority property, 398
Proceed to Check Out button (Wrox WebShop), 276
process instrumentation, 111
Product class
CategoryId property, 278
Customer Support Site, 237–238
Description property, 278
Wrox WebShop, 277–279

Product Locator page, Customer Support Site, 251–255
Product table

Customer Support Site, 245
Wrox WebShop, 285

ProductDB class, 242
ProductId property, OrderedProduct class, 279
products, Wrox WebShop

adding to cart, 296–297
changing in cart, 298–301
deleting from cart, 300
displaying, 294–296
managing, 309

Professional .NET 2.0 Generics (Golding), 295
properties
AddressLine, 10
Alignment, 383
AllowedExtensions, 359, 368
AllowPaging, 147, 294
AllowReturn, 335

AllowSorting, 147
Answer, 240
AppendDataBoundItems, 418
Application, 397
AutoPostBack, 426
AvailableOnWeekDays, 317, 344
BookingObjectId, 319
Cancel, 335
CategoryId, 278
CheckAppointment, 336, 339
City, 10
CommandName, 154, 268
CommandText, 415
CommandType, 415
Comments, 319
ConnectionStringSettings, 180
ContactID, 10
Count, 280
CreateDateandTime, 397
CreateMemberId, 398
CurrentPageIndex, 294
DataKeyNames, 147
DataTextField, 380
DataValueField, 380
DeleteParameters, 30
Description, 278
DisableCreatedUser, 340
EmailFrom, 180
EmailTo, 180
EnableViewState, 427
EndDate, 319
EndTime, 317, 327–328
EntryDate, 13
EntryText, 13
EntryTitle, 13
EventDate, 16
EventDescription, 16
EventDuration, 16
EventName, 16
Extension, 359
Families, 380
Feature, 398
FileName, 359, 366
FinishButtonText, 366
Frequency, 398
GenerateDateFolder, 360
GenerateUniqueFileName, 360
Height, 375–377
Id, 278–279, 317, 319, 398
ImageUrl, 238
IsValid, 329, 336
Item, 11, 13, 17
Items, 280
Keywords, 238
LastName, 10
Left, 375–377
MaxImageHeight, 362

450

parameters (continued)

16_749516 bindex.qxp 2/10/06 9:22 PM Page 450

MaxImageWidth, 362
MobilePhone, 10
MoveIncrease, 375
OverWriteExistingFile, 360
PageSize, 294
PictureUrlLarge, 278
PictureUrlMedium, 278
PictureUrlSmall, 278
PostalCode, 10
Price, 278
Priority, 398
ProductId, 279
Quantity, 279
QuestionLong, 240
QuestionShort, 240
ReturnValue, 416
RowCommand, 268–269
SelectParameters, 30
StartDate, 319
StartTime, 317, 327
State, 10
StepType, 335
SubTotal, 279
TagLine, 238
Telephone, 10
TempFileName, 366, 379
Title, 278, 317, 398
ToolbarSet, 158
Top, 375–377
Total, 280
UpdatedDateandTime, 398
UpdateMemberId, 398
UserEmailAddress, 319
UserName, 319
VirtualSavePath, 359–360
Visible, 426
Width, 375–377

provider-independent code, Wrox Blog, 185–188
public end-user section (Appointment Booking

System), 311
public front end, Wrox CMS, 133–134
public site, Wrox WebShop, 273

Q
Quantity property, OrderedProduct class, 279
queries, Wrox Blog, 179–180
Question table (Wrox Survey Engine), 113
QuestionLong property, 240
questions field (Add Survey Wizard), 107
QuestionShort property, 240

R
RaiseCallbackEvent() method, 76–77, 90
RaiseEvent() method, 365
Read More link (Wrox WebShop), 274
ReceiveServerData() method, 77, 93
recordsAffected parameter, 257
recursive members, 259

red text, Online Diary events, 3
registration process, Online Diary, 1–2, 18–19
Remote Scripting technology, 75
Remove() method
ContactCollection class, 11
DiaryEntryCollection class, 14
DiaryEventCollection class, 16
ShoppingCart class, 281

rendering images (Wrox Photo Album), 212
Repeater control, 346, 348
Replace() method, 265, 341
Reporting menu (Bug Base application), 393, 395
Reproducibility Items, Bug Base applications, 395–396
Require Comments setting (Appointment Booking Sys-

tem), 312
RequiredFieldValidator control, 336, 367
resizeFactor parameter, 370
ResizeImage() method, 358, 370
resizing images, 369–372
Resource class, 53, 58–59
Resource table, e-mail, 45
resourceDB class, 59–62
Response table (Wrox Survey Engine), 113
RETURNS statement, 259
ReturnValue property, 416
RIGHT OUTER JOIN value, 416
rights management, security, 51
RoleGroup element, 413
Room table, Wrox Chat Server, 79
root files

Appointment Booking System, 325–327
Bug Base application, 410–413
Customer Support Site, 248–251
Wrox Blog, 181–185
Wrox Chat Server, 84–87
Wrox CMS, 141–145
Wrox File Share, 56–60
Wrox Photo Album, 222–223
Wrox Survey Engine, 122–126
Wrox WebShop, 289–293

RotateFlip() method, 374
RotateFlipImage control, 372
RotateImage() method, 358, 373
rotating images, 372–374
row and column objects, Wrox CMS, 145
RowCommand property, 268–269

S
Save Entry button (Online Diary), 4
Save() method
Contacts class, 9
DiaryEntry class, 12
DiaryEvent class, 15, 29
FaqDB class, 243
Product class, 238
ProductDB class, 242
SurveyBase class, 118
SurveyDB class, 120

451

Save() method

In
de

x

16_749516 bindex.qxp 2/10/06 9:22 PM Page 451

SaveBlogEntry() method
BlogManager class, 173
BlogManagerDB class, 177

SaveEmailContent() method, 53
SaveMessage() method
ChatRoom class, 81
ChatRoomDB class, 83, 86

SaveQuestion() method
Survey class, 119
SurveyDB class, 121

SaveResource() method, 53
SaveResponses() method
Survey class, 119
SurveyDB class, 121

SaveSurvey() method, 119
SaveSurveyAsCurrent() method
Survey class, 119
SurveyDB class, 121

SearchCriteria class, 402–403
searches
AND statement, 265
bugs, 423–427
dynamic, 263–264
OR statement, 265
simpleSearch variable, 265
spaces in, 266
wild cards, 265

SecureDiary directory, 18
security

controls, Online Diary, 2, 18
form elements, 51–52
Greeting Cards application, 387–389
Login control, 51
rights management, 51, 117
Wrox CMS, 163–164
Wrox File Share, 51–52
Wrox Photo Album, 217–218, 228
Wrox Survey Engine, 116–117
Wrox WebShop, 307–308

Security Administration tool, 51–52
Select Case statement, 268, 335
SELECT statement, 257–260
SelectCommand attribute, 143, 226
SelectCommandType attribute, 143
SelectedIndexChanged event, 380
SelectedValue parameter, 253
SelectImage control, 365
SelectMethod attribute, 25, 252, 298
SelectParameters property, 30
SendEmail() method, 55
SendingMail event, 23
SessionParameter value, 414
SetMemberId() method, 414
Severity Items, Bug Base applications, 395–396
shared methods, 8, 252
ShareLocalFolderPath() method, 54
Shop folder (Wrox WebShop), 274, 293
ShopManager class, 281–283
ShopManagerDB class, 287–288

ShoppingCart class, 280–281
ShoppingCart.aspx file, Wrox WebShop, 297–298
ShowDeleteButton parameter, 153
ShowEditButton parameter, 153
Sign Up page

Appointment Booking System, 340–342
Online Diary, 1–2

SignIn.aspx WebForm, 88
simpleSearch variable, 265
single quote (‘), 265
Site Map link (Wrox Photo Album), 206
site structure

Wrox Chat Server, 78
Wrox Photo Album, 213–214
Wrox Survey Engine, 111–112

SiteMapDataSource control, 88, 222
SiteMapPath control, 222
SiteMaster.master file, 142–145
SiteMenu control, 143–144
skins

Wrox Chat Server, 80–81
Wrox File Share, 50
Wrox Photo Album, 214–215
Wrox Survey Engine, 115–116

SMTP server configuration, 42
SmtpServer() method, 54
SortExpression attribute, 148, 428
sorting columns, 149
SourceGear Web site, 391
spaces, in searches, 266
Split() method, 266
SQL injection hacking technique, 265
SQL server data binding, 110–111
SqlCacheDependency classes, 404, 419
SqlCommand object, 125
SqlConnection() method, 221
SqlDataReader object, 25
srcHeight parameter, 378
srcUnit parameter, 378
srcWidth parameter, 378
srcX parameter, 378
srcY parameter, 378
start time

Online Diary events, 4
Start Time settings (Appointment Booking System),

312–313
StartTime property, 317, 327

StartDate property, 319
State property, 10
statements
AND, 265
IF/THEN, 255
IN, 258
OR, 265
RETURNS, 259
SELECT, 257–260
Select Case, 268, 335
Throw, 296
WITH, 259

452

SaveBlogEntry () method

16_749516 bindex.qxp 2/10/06 9:22 PM Page 452

StaticFiles folder, Appointment Booking System, 326
Status Items, Bug Base application, 395
StepType property, 335
stored procedures

Customer Support Site, 247
naming conventions, 114–115
Wrox Blog, 179–180
Wrox File Share, 45–46
Wrox Survey Engine, 114

storing and rendering images (Wrox Photo Album), 212
StringFormat value, 383
SubTotal property, OrderedProduct class, 279
support. See Customer Support Site
Survey class, 118–119
Survey table (Wrox Survey Engine), 113
SurveyBase class, 117–118
SurveyDB class, 120–121, 124–126
surveyresults user control, 129–130
Survey.vb class, 122–123
System.Data.Common namespace, Wrox Blog, 175

T
TableCell variable, 331
TableRow variable, 331
tables

CTE (Common Table Expressions), 233, 257, 259
domain, 402
relationships, Wrox CMS, 139–140

TagLine property, 238
tags
<a>, 291
, 384
, 412
<meta>, 249–250
, 412

TakeSurvey.aspx WebForm, 126–127
tasks. See Appointment Booking System
Telephone property, 10
TempFileName property, 366, 379
TemplateField control, GridView control, 148–149
testReplace variable, 265
text

adding to images, 379–383
e-mail content, 46–47

text boxes, 4
TextBox control, 41
themes and skins

Wrox Chat Server, 80–81
Wrox File Share, 50
Wrox Photo Album, 214–215
Wrox Survey Engine, 115–116

Throw statement, 296
thumbnail views, Wrox Photo Album, 207
time-out error, 164
TimeSheet control, Appointment Booking System,

328–332

Title property
BookingObject class, 317
Bug class, 398
Product class, 278

ToolbarSet property, 158
Toolkit (Greeting Cards application), 355
Top property, 375–377
ToString() method, 199, 343
Total property, ShoppingCart class, 280
TreeView control, 88, 209
Try/Catch block, 159, 296
type, instance of, 252
TypeName attribute, 25

U
 tag, 412
UltraClean theme, Wrox Photo Album, 215
Update() method, 281
UpdateCommand control, GridView control, 149, 226
UpdatedDateandTime property, 398
UpdateDiaryEntry() method, 29
UpdateMemberId property, 398
UpdateMethod attribute, 298
Updating event, 298
Upload button (Wrox Photo Album), 211
UploadFile() method, 360, 368
UploadHandler class, 358–361, 368
uploading files, 367–369
upsert methodology, e-mail, 48–49
user accounts

Bug Base application, 436
Wrox Survey Engine, 117

user controls
Wrox Blog, 188–192
Wrox Chat Server, 94–96
Wrox File Share, 65–67
Wrox Photo Album, 229–230
Wrox Survey Engine, 127–130

User table, Wrox Chat Server, 80
user-defined functions, Customer Support Site, 247
UserDetails.aspx file, Wrox WebShop, 293
UserEmailAddress property, Appointment class, 319
UserFiles folder, Customer Support Site, 251
UserManager class, 173–174
UserManagerDB class, 177
username and password, Online Diary, 1–2
UserName property, Appointment class, 319
Using block, 421
Utilities class, 42–43, 55

V
ValidateAllSteps() method, 336
ValidateStep() method, 335
validation controls, 158
VerifyingUser() method, 293
View control, 364

453

View control

In
de

x

16_749516 bindex.qxp 2/10/06 9:22 PM Page 453

VirtualSavePath property, 359–360
Visible property, 426

W
Web Site Administration Tool, 270
Web.config file

Appointment Booking System, 325
Bug Base application, 410–412
Customer Support Site, 248
Login.aspx, 63–64
password reminder, 23
Wrox Blog, 181
Wrox Chat Server, 84–87
Wrox CMS, 141–142
Wrox File Share, 56
Wrox Photo Album, 222
Wrox Survey Engine, 122
Wrox WebShop, 289–291

WebConfigurationManager class, 343
WebForms

Admin.aspx, 225–227
ChatRoom.aspx, 90–92
ChatWindow.aspx, 92–94
Click event, 63, 262
Download.aspx, 64–65
EditPhotos.aspx, 227–228
Login control, 63–64
Photos.aspx, 223–224
SignIn.aspx, 88
TakeSurvey.aspx, 126–127

WebShop. See Wrox WebShop
Web.sitemap file, 223, 413
Weekdays class, 321
WHERE clause, 183, 254–255, 264, 338
whereClause variable, 265
Width property, 375–377
wild cards, searches, 265
WITH statement, 259
Wizard control, Appointment Booking System,

334–336, 338–339
Wrox Blog
AppConfiguration class, 180
blog entries, defined, 169
blog entries, displaying, 191–193
blog entries, managing, 193–197
BlogEntry class, 171–172, 178
BlogManager class, 172–173
BlogManagerDB class, 176–177
business layer, 170–174
calendar display, 169, 189
Category table, 179
Create New Entry button, 169
data access layer, 174–177
discussed, 168
error handling, 198–200
factory patterns, 175
installation, 200–201, 203
logging, 198–200

provider-independent code, 185–188
queries, 179–180
root files, 181–185
stored procedures, 179–180
System.Data.Common namespace, 175
user controls, 188–192
UserManager class, 173–174
UserManagerDB class, 177

Wrox Chat Server
About link, 74
callbacks, 75–78
Category table, 79
ChatRoom class, 81–82, 85–86
ChatRoom.aspx WebForm, 90–92
ChatRoomDB class, 82–83, 86–87
ChatWindow.aspx WebForm, 92–94
Config class, 83–85
Contact Us link, 74
data model, 78–81
Default.aspx WebForm, 88–90
discussed, 71
e-mail address entry, 73
features, 72
Home link, 74
hosted web site installation, 96
local developer installation, 96–97
Message table, 80
Room table, 79
root files, 84–87
SignIn.aspx WebForm, 88
site structure, 78
themes and skins, 80–81
user controls, 94–96
User table, 80
Web.config file, 84–87

Wrox CMS
AddEditContent page, 154
Admin link, 134
AdminMaster.master file, 142–145
AllowPaging property, 147
AllowSorting property, 147
AppConfiguration class, 140–141
Articles link, 134
business layer, 137–138
categories, managing, 146–150
columns, sorting, 149
Command and Parameter Editor, 151
Content class, 137–138
content, displaying on web site, 159–161
content management, 153–157
content types, 134
ContentDB class, 139
ControlParameter parameter, 150
data access layer, 139–140
data source controls, 136–137
DataKeyNames property, 147
Delete button, 153
Edit button, 153–154
Home link, 134

454

VirtualSavePath property

16_749516 bindex.qxp 2/10/06 9:22 PM Page 454

IIS configuration, 162–163
installation, 162
Login link, 134
Login.aspx file, 146
public front end, 133–134
root files, 141–145
row and column objects, 145
security setting changes, 163–164
SiteMaster.master file, 142–145
table relationships, 139–140

Wrox File Share
Admin link, 39–40
Config class, 54, 56
data model and database objects, 44–45
e-mail, 42–43
EmailContent class, 52–53
features, 37–38
file structure, 43
FileUpload control, 41–42
hosted web site installation, 67
local developer installation, 68
Resource class, 53, 58–59
resourceDB class, 59–62
root files, 56–60
security model, 51–52
stored procedures, 45–46
themes and skins, 50
user controls, 65–67
Utilities class, 55
Web.config file, 56
WebForms, 62–65

Wrox Photo Album
About Me link, 206–207
Add Collection link, 211
Admin link, 206
collections, 207, 217
Contact Me link, 206–207
data model, 216–217
displaying images, 212
Edit Photos link, 209
features, 205
hosted web site installation, 230–231
local developer installation, 231–232
Login.aspx WebForm, 224–225
OpenBook theme, 215
Photo Albums link, 206
Photo class, 218–219
Photo table, 217
PhotoCollection class, 219
PhotoDB class, 219–221
root files, 222–223
security model, 217–218
Site Map link, 206
site structure, 213–214
storing and rendering images, 212
themes and skins, 214–215
thumbnail views, 207

TreeView control, 209
UltraClean theme, 215
Upload button, 211
user controls, 229–230
WebForms, 223–227

Wrox Survey Engine
About link, 101
Add Survey Wizard, 105–108
Admin link, 101, 103–104
Config class, 121, 123–124
Contact Us link, 101
data model and database objects, 112–115
Default.aspx WebForm, 126
discussed, 100
existing surveys, editing, 109
features, 100
Home link, 101
hosted web site installation, 131
local developer installation, 131–132
Login.aspx WebForm, 126
multiple choice survey example, 102–103
new survey creation, 105–108
object binding, 110–111
Question table, 113
Response table, 113
root files, 122–126
security model, 116–117
site structure, 111–112
SQL server data binding, 110–111
stored procedures, 114
Survey class, 118–119
Survey table, 113
SurveyBase class, 117–118
SurveyDB class, 120–121, 124–126
Survey.vb class, 122–123
TakeSurvey.aspx WebForm, 126–127
themes and skins, 115–116
user accounts, 117
user controls, 127–130
Web.config file, 122

Wrox WebShop
AppConfiguration class, 288
business layer, 277–281
Category table, 285
Continue Shopping button, 276
Customer class, 283–284
data access layer, 284–287
data model, 284
Edit button, 299
e-mail settings, changes to, 309
Global.asax file, 289
Home button, 274
installation, 307
Login button, 274
Management folder, 273–274, 306
OrderBase table, 286
OrderDetail table, 286

455

Wrox WebShop

In
de

x

16_749516 bindex.qxp 2/10/06 9:22 PM Page 455

Wrox WebShop (continued)
OrderedProduct class, 279–280
orders, finalizing, 301–305
Proceed to Check Out button, 276
Product class, 277–279
Product table, 285
products, adding to cart, 296–297
products, changing in cart, 298–301
products, deleting from cart, 300
products, displaying, 294–296
products, managing, 309
public site, 273
Read More link, 274
root files, 289–293
security settings, changing, 307–308
Shop folder, 274, 293
ShopManager class, 281–283
ShopManagerDB class, 287–288
ShoppingCart class, 280–281
ShoppingCart.aspx file, 297–298

456

Wrox WebShop (continued)

16_749516 bindex.qxp 2/10/06 9:22 PM Page 456

Wiley Publishing, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the soft-
ware packet(s) included with this book “Book”. This is a license agreement “Agreement”
between you and Wiley Publishing, Inc. “WPI”. By opening the accompanying software
packet(s), you acknowledge that you have read and accept the following terms and condi-
tions. If you do not agree and do not want to be bound by such terms and conditions,
promptly return the Book and the unopened software packet(s) to the place you obtained
them for a full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive license
to use one copy of the enclosed software program(s) (collectively, the “Software”)
solely for your own personal or business purposes on a single computer (whether a
standard computer or a workstation component of a multi-user network). The Software
is in use on a computer when it is loaded into temporary memory (RAM) or installed
into permanent memory (hard disk, CD-ROM, or other storage device). WPI reserves all
rights not expressly granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in and
to the compilation of the Software recorded on the disk(s) or CD-ROM “Software
Media”. Copyright to the individual programs recorded on the Software Media is owned
by the author or other authorized copyright owner of each program. Ownership of the
Software and all proprietary rights relating thereto remain with WPI and its licensers.

3. Restrictions on Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival purposes,
or (ii) transfer the Software to a single hard disk, provided that you keep the orig-
inal for backup or archival purposes. You may not (i) rent or lease the Software,
(ii) copy or reproduce the Software through a LAN or other network system or
through any computer subscriber system or bulletin-board system, or (iii) mod-
ify, adapt, or create derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may
transfer the Software and user documentation on a permanent basis, provided
that the transferee agrees to accept the terms and conditions of this Agreement
and you retain no copies. If the Software is an update or has been updated, any
transfer must include the most recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual require-
ments and restrictions detailed for each individual program in the About the CD-ROM
appendix of this Book. These limitations are also contained in the individual license
agreements recorded on the Software Media. These limitations may include a require-
ment that after using the program for a specified period of time, the user must pay a
registration fee or discontinue use. By opening the Software packet(s), you will be
agreeing to abide by the licenses and restrictions for these individual programs that
are detailed in the About the CD-ROM appendix and on the Software Media. None of the
material on this Software Media or listed in this Book may ever be redistributed, in
original or modified form, for commercial purposes.

17_749516 license.qxp 2/10/06 9:22 PM Page 457

5. Limited Warranty.

(a) WPI warrants that the Software and Software Media are free from defects in mate-
rials and workmanship under normal use for a period of sixty (60) days from the
date of purchase of this Book. If WPI receives notification within the warranty
period of defects in materials or workmanship, WPI will replace the defective
Software Media.

(b) WPI AND THE AUTHOR(S) OF THE BOOK DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH
RESPECT TO THE SOFTWARE, THE PROGRAMS, THE SOURCE CODE CONTAINED
THEREIN, AND/OR THE TECHNIQUES DESCRIBED IN THIS BOOK. WPI DOES NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION OF THE SOFTWARE WILL BE
ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other
rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) WPI’s entire liability and your exclusive remedy for defects in materials and work-
manship shall be limited to replacement of the Software Media, which may be
returned to WPI with a copy of your receipt at the following address: Software
Media Fulfillment Department, Attn.: ASP.NET 2.0 Instant Results, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, or call
1-800-762-2974. Please allow four to six weeks for delivery. This Limited Warranty
is void if failure of the Software Media has resulted from accident, abuse, or mis-
application. Any replacement Software Media will be warranted for the remainder
of the original warranty period or thirty (30) days, whichever is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever (includ-
ing without limitation damages for loss of business profits, business interruption,
loss of business information, or any other pecuniary loss) arising from the use of
or inability to use the Book or the Software, even if WPI has been advised of the
possibility of such damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability for
consequential or incidental damages, the above limitation or exclusion may not
apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for
or on behalf of the United States of America, its agencies and/or instrumentalities “U.S.
Government” is subject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause of DFARS 252.227-7013, or subparagraphs
(c) (1) and (2) of the Commercial Computer Software - Restricted Rights clause at FAR
52.227-19, and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and
revokes and supersedes all prior agreements, oral or written, between them and may
not be modified or amended except in a writing signed by both parties hereto that
specifically refers to this Agreement. This Agreement shall take precedence over any
other documents that may be in conflict herewith. If any one or more provisions con-
tained in this Agreement are held by any court or tribunal to be invalid, illegal, or other-
wise unenforceable, each and every other provision shall remain in full force and effect.

17_749516 license.qxp 2/10/06 9:22 PM Page 458

18_749516 bob.qxp 2/10/06 9:23 PM Page 459

18_749516 bob.qxp 2/10/06 9:23 PM Page 460

1
Modifying the Online Diary

The project as it stands provides a good springboard for a fully developed diary and contacts man-
agement system. You could, for example, improve contact display and management. While the
system is fine for a dozen or two contacts it’ll become unwieldy much beyond that. Organizing
display of contacts by the first letter of their surname would be one way of dealing with this. The
Contact class already has a method that enables that and which you could use. Another alterna-
tive is a search facility based on one or more parameters such as e-mail, name, and so on.

Either way you’ll need to edit the YourContacts.aspx page. Currently when it displays contacts in
the GridView control it just shows all. The Contact class already has a function that takes the first
letter of the surname as a parameter. However, at the moment it’s optional and the current code
doesn’t make use of it. By adding a drop-down list with A to Z, you could then use that to pass the
surname’s first letter as a parameter.

You’ll then need to let the ObjectDataSource control know about the new parameter. If you’ve
called your list box DropDownBox1 then to your ObjectDataSource mark up you’d need to add:

<asp:ControlParameter ControlID=”DropDownList1”
Name=”FirstLetterOfSurname” PropertyName=”SelectedValue”
Type=”Char” />

Now only the contacts with surname specified in the drop down list will be displayed.

A few more improvements could be:

❑ Capability to upload and store photos of contacts.

❑ Capability to specify which of your contacts will be attending an event.

❑ Storing details like contacts’ birthdays and having automatic reminders.

❑ Having automatic reminders for events e-mailed to you.

❑ Adding cell phone text messaging support allowing you to send e-mails or text messages
to contacts.

749516 bc01.qxp 2/9/06 11:18 AM Page 1

749516 bc01.qxp 2/9/06 11:18 AM Page 2

2
Modifying the Wrox

File Share

Although the Wrox File Share is a great starter application for learning ASP.NET 2.0, it likely does
not contain all of the features you might want to see. Some possible enhancements to the Wrox File
Share could include:

❑ Management Capabilities: It would be nice to be able to see which files are on the server,
how many times they have been accessed, and so forth. Maybe even the ability to delete
the file if it is not being accessed or is getting old.

❑ Reporting: It would be great to have some prepared reports about resources, their
responses, and percentages for each.

❑ Additional E-mail: The sender of the file may wish to receive an e-mail indicating that the
user has downloaded the file that was sent.

❑ Site Counters: The ability to track the number of hits to the site, including the number of
times the file is downloaded.

If you want to take on one of these features, the sending of an additional e-mail, the following
steps would be required:

1. In Visual Web Developer or Visual Studio 2005, open the website from its extracted location
at C:\inetpub\wwwroot. Open the Database Explorer by selecting the View➪DataBase
Explorer from the menu. Find your database under the Database Connections node of the
TreeView. If your database is not listed, right-click the Data Connections node, select the
Add Connection option, select the Microsoft SQL Server File option, and browse to the
FileShareDB.mdf file in the App_Data folder of the site. This should bring up your connection
within the Database Explorer window. Now that you have a valid database tree, expand it
to see the Stored Procedures folder. Right-click the folder and select the Add New Stored
Procedure option.

749516 bc02.qxp 2/9/06 11:19 AM Page 3

2. Add the following new stored procedure:

CREATE PROCEDURE dbo.sprocResourceSelectEmailInfo
/* ‘===
‘ NAME: sprocResourceSelectEmailInfo
‘ DATE CREATED: October 27, 2005
‘ CREATED BY: Shawn Livermore (shawnlivermore.blogspot.com)
‘ CREATED FOR: ASP.NET 2.0 - Instant Results
‘ FUNCTION: Gets a specific resource’s sender email information from

the DB
‘===

*/
(@id int)

as

SELECT dbo.Contact.email
FROM dbo.Contact INNER JOIN

dbo.Resource ON dbo.Contact.id = dbo.Resource.fromContactID
WHERE (dbo.Resource.id = @id)

❑ This new stored procedure, sprocResourceSelectEmailInfo, will provide the e-mail
address of the sender for a specific resource file.

3. Expand the App_Code folder, and then expand the Dal folder to view the EmaiContentDB.vb
class file. In this class, you must add a new function, GetEmailSenderForResource, which
will execute the stored procedure you just created. This function will also have the integer
parameter of resourceID, and return a string value for the sender’s e-mail address.

❑ The text of this function is as follows:

‘’’ <summary>
‘’’ Gets the email address for the sender of a file from the database
‘’’ </summary>
Public Shared Function GetEmailSenderForResource(ByVal resourceID As Integer)

As String
Dim mSender As String = “”

Try
Using mConnection As New SqlConnection(Config.ConnectionString)

Dim mCommand As SqlCommand = New SqlCommand(_
“sprocResourceSelectEmailInfo”, mConnection)

mCommand.CommandType = CommandType.StoredProcedure
mCommand.Parameters.AddWithValue(“@id”, resourceID)
mConnection.Open()
Using mDataReader As SqlDataReader = _

mCommand.ExecuteReader(CommandBehavior.CloseConnection)
If mDataReader.Read() Then

mSender = mDataReader.GetString(_
mDataReader.GetOrdinal(“email”))

End If
mDataReader.Close()

End Using
End Using

Catch ex As Exception

4

Chapter 2

749516 bc02.qxp 2/9/06 11:19 AM Page 4

‘By calling the “Throw” statement, you are raising the error to the
‘global.asax file, which will use the default error handling page to
‘process/display the custom error to the user
Throw

End Try

Return mSender
End Function

4. In the App_Code folder within the Bll subfolder, open the EmailContent.vb class file. Add a
new function to this class, named GetEmailSenderForResource. This function will also have
the integer parameter of resourceID, and return a string value for the sender’s e-mail
address.

❑ The following is the contents of GetEmailSenderForResource:

‘’’ <summary>
‘’’ Gets the email address for the sender of a file from the database
‘’’ </summary>
Public Shared Function GetEmailSenderForResource(ByVal resourceID As Integer)

As String
Return EmailContentDB.GetEmailSenderForResource(resourceID)

End Function

5. Open the Download.aspx page and press F7 to open the code-behind file, Download.aspx.cs.
You can also right click the Download.aspx page and select the View Code option from the
menu. Within this page, add some logic, displayed below, to send the e-mail to the original
sender. This logic must occur within the Try-Catch block of the DisplayDownloadDialog
function. This functionality will capture the resourceID querystring variable, and use it to
query the database and extract the sender’s e-mail address.

Dim resourceID As Integer = Request.QueryString(“resourceID”)
Dim senderEmail As String = EmailContent.GetEmailSenderForResource(_

resourceID)
Dim emailBody As String = “Your file was downloaded at “ & _

System.DateTime.Today.ToLongDateString
Utilities.SendEmail(senderEmail, Config.EmailFrom, _

“Your file was downloaded”, emailBody)

Now that you have implemented a simple enhancement, your understanding of the application’s archi-
tecture is probably much stronger. You have seen and developed within the layered approach to the
design. This will allow you to move quickly to add more functionality to the application, or write one of
your own.

5

Modifying the Wrox File Share

749516 bc02.qxp 2/9/06 11:19 AM Page 5

749516 bc02.qxp 2/9/06 11:19 AM Page 6

3
Modifying the Wrox

Chat Server

Some possible enhancements to the Wrox Chat Server could include:

❑ Management Capabilities: The ability to see which chat sessions are used and how often
they are used

❑ Automated Responses: Automatic messages to respond to a user if no administrative
personnel are available to enter their chat requests.

❑ Chat Content Filters: The ability to track and alert administrative personnel when certain
vulgarities or unacceptable terminology is used within chat sessions.

The following steps would be required to implement automated responses:

1. Open the Web.config file, and scroll down to the appSettings section. Add two entries
for the hour in the morning that the site opens and the hour that it closes, (using military
hours from 0 to 24). You also will need to add an entry to specify the administrator’s
email address, and the message to send out to the chat user during off-hours. So if you
want to open at 8am and close at 6pm, the following four entries would be added (using
military time, 8am is the number 8, and 6pm is the number 18):

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<appSettings>

<add key=”HourOpen” value=”8”/>
<add key=”HourClose” value=”18”/>
<add key=”AdminEmail” value=”Admin@MyDomain.com”/>
<add key=”ClosedMessage” value=”We are sorry, but nobody is here to assist

you right now. Please try again between 8 am and 6 pm PST. For online
assistance, visit our Help page.”/>

2. Expand the ContentFiles folder, then open the ChatRoom.aspx.vb WebForm’s code-
behind page to view its contents. Within this file is the RaiseCallbackEvent event,
where you will add a conditional message based on the time of the chatted message. The
text of this function is below:

749516 bc03.qxp 2/9/06 11:19 AM Page 7

‘’’ <summary>
‘’’ the RaiseCallbackEvent captures the content from the
‘’’ chat message from the window...
‘’’ </summary>
Public Sub RaiseCallbackEvent(ByVal eventArgument As String) _

Implements System.Web.UI.ICallbackEventHandler.RaiseCallbackEvent

If eventArgument.Length > 0 Then
ChatRoom.SaveMessage(Request.QueryString(“chatRoomID”), _

eventArgument, Session(“Email”))
End If

End Sub

❑ Enter the following code just below the SaveMessage method call, and before the end
of the IF statement:

Dim mHour As Integer = System.DateTime.Now.Hour
If Config.HourOpen <= mHour And Config.HourClose >= mHour Then

ChatRoom.SaveMessage(Request.QueryString(“chatRoomID”), _
Config.ClosedMessage, Config.AdminEmail)

End If

❑ The entire function would be:

‘’’ <summary>
‘’’ the RaiseCallbackEvent captures the content from the
‘’’ chat message from the window...
‘’’ </summary>
Public Sub RaiseCallbackEvent(ByVal eventArgument As String) _

Implements System.Web.UI.ICallbackEventHandler.RaiseCallbackEvent

If eventArgument.Length > 0 Then
ChatRoom.SaveMessage(Request.QueryString(“chatRoomID”), _

eventArgument, Session(“Email”))
Dim mHour As Integer = System.DateTime.Now.Hour
If Config.HourOpen <= mHour And Config.HourClose >= mHour Then

ChatRoom.SaveMessage(Request.QueryString(“chatRoomID”), _
Config.ClosedMessage, Config.AdminEmail)

End If
End If

End Sub

3. In the App_Code folder, open the config.vb class file. Add the four entries needed for the HourOpen
and HourClose variables to be available to the rest of the application logic. Since the properties are
public shared, they can be accessed from the class directly via dot-notation. Add the following
code to this file to expose these four variable values from the Web.config file:

‘’’ <summary>
‘’’ The hour to open in the morning
‘’’ </summary>
Public Shared ReadOnly Property HourOpen() As String

Get
Return ConfigurationManager.AppSettings(“HourOpen”).ToString()

End Get

8

Chapter 3

749516 bc03.qxp 2/9/06 11:19 AM Page 8

End Property
‘’’ <summary>
‘’’ The hour to close in the evening
‘’’ </summary>
Public Shared ReadOnly Property HourClose() As String

Get
Return ConfigurationManager.AppSettings(“HourClose”).ToString()

End Get
End Property
‘’’ <summary>
‘’’ The administrator’s email address
‘’’ </summary>
Public Shared ReadOnly Property AdminEmail() As String

Get
Return ConfigurationManager.AppSettings(“AdminEmail”).ToString()

End Get
End Property
‘’’ <summary>
‘’’ The message to be sent back to the user
‘’’ </summary>
Public Shared ReadOnly Property ClosedMessage() As String

Get
Return ConfigurationManager.AppSettings(“ClosedMessage”).ToString()

End Get
End Property

4. That’s it! Press F5 to run the application and test it out. If a chat message comes into the system
that is outside of the stated work hours of 8am to 6pm, then the preconfigured chat textual message
will be posted immediately following the user’s message.

Now that you have constructed a basic enhancement, you should have a much better grasp of the appli-
cation’s simplistic file structure and layered approach, and you can move quicker to add more functionality
to the application, or write a new feature of your own.

9

Modifying the Wrox Chat Server

749516 bc03.qxp 2/9/06 11:19 AM Page 9

749516 bc03.qxp 2/9/06 11:19 AM Page 10

4
Modifying the Wrox

Survey Engine

Although the Wrox Survey Engine is a great starter application for utilizing ASP.NET 2.0, it likely
does not contain all the features you might want to see. Some possible enhancements to the Wrox
Survey Engine could include:

❑ Survey Reviews: Let users make comments on what they think about the survey.

❑ Number Counts: The ability to view the number of responses to each of the surveys from
the Administration section.

❑ Charting: The ability to view a pie chart or a bar chart next to the percentages of the survey
results pages.

❑ Email Invitations: An e-mail message-generation tool for sending an e-mail invitation to
take the survey.

❑ Final Report: A request area to view final survey results once a specified number of
responses are received.

❑ Reporting: Some prepared reports about surveys, their responses, and percentages for
each response.

If you want to implement number counts, the following steps would be required:

1. In Visual Web Developer or Visual Studio 2005, open the website from its extracted location
at C:\inetpub\wwwroot\SurveyEngine. Open the Database Explorer by selecting the
View➪Database Explorer menu selection. Find your database under the Database
Connections node of the tree view. If your database is not listed, right click the Data
Connections node in the tree view, select the Add Connection option, select the Microsoft
SQL Server File option, and browse to the PhotoDB.mdf file in the App_Data folder of the
site. This should bring up your connection within the Database Explorer window. Now
that you have a valid database tree, expand it to see the Views node, and drill down to the
viewResponseCountBySurvey view. Right click the view and select the Open View
Definition option.

749516 bc04.qxp 2/9/06 11:44 AM Page 11

2. The query used for the view should be the following:

SELECT TOP (100) PERCENT dbo.viewResponseCountBySurvey.SurveyID,
dbo.viewResponseCountBySurvey.NumberResponses /
dbo.viewQuestionCountBySurvey.NumQuestions AS Responses
FROM dbo.viewQuestionCountBySurvey INNER JOIN dbo.viewResponseCountBySurvey
ON dbo.viewQuestionCountBySurvey.SurveyID = dbo.viewResponseCountBySurvey.SurveyID
ORDER BY dbo.viewResponseCountBySurvey.SurveyID

❑ The table design area, which corresponds to the SQL query, should appear similar to
Figure 4-1.

Figure 4-1

❑ In this view, the count for the survey responses is returned with the SurveyID. To
obtain the survey records and the count of responses, you have to add the Survey table
to the view designer, joining on the SurveyID. So in chronological steps, the query can
be modified to provide all of the fields you need for the survey grid, along with its
number of user responses.

❑ You can modify this query by right clicking near the tables in the design area, and
selecting the Add Table option.

3. On the Tables tab of the pop-up window, select the Survey table. Click OK to see the Survey
table added to the designer window.

4. Then, click the ID column in the Survey table, and drag to the viewQuestionCountBySurvey
table and release over the SurveyID field. The relationship of inner join between the
surveyID and ID fields. Then check the box next to all of the column names (ID, Name,
Description, Date, and IsCurrentSurvey). Next, uncheck the SurveyID column from the
viewResponseCountBySurvey view within the same designer window. The results of this query
will return the fields of the Survey table, and count the number of responses that the survey
generated. Figure 4-2 displays the view design with the added Survey table.

Figure 4-2

❑ The new Transact-SQL code for the query is below:

12

Chapter 4

749516 bc04.qxp 2/9/06 11:44 AM Page 12

SELECT TOP (100) PERCENT dbo.viewResponseCountBySurvey.NumberResponses
/ dbo.viewQuestionCountBySurvey.NumQuestions AS Responses,
dbo.Survey.Name, dbo.Survey.Description, dbo.Survey.Date,
dbo.Survey.IsCurrentSurvey, dbo.Survey.ID

FROM dbo.viewQuestionCountBySurvey INNER JOIN
dbo.viewResponseCountBySurvey ON dbo.viewQuestionCountBySurvey.SurveyID
= dbo.viewResponseCountBySurvey.SurveyID INNER JOIN
dbo.Survey ON dbo.viewQuestionCountBySurvey.SurveyID = dbo.Survey.ID

ORDER BY dbo.viewResponseCountBySurvey.SurveyID

❑ Running the SQL query produces the results shown in Figure 4-3.

Figure 4-3

5. The resulting data provide a better view of a survey, and now you can provide this view to the
user through modifying the stored procedure that is used to get the records for the user. Do this
by opening the stored procedure entitled sprocSurveySelectList:

ALTER PROCEDURE dbo.sprocSurveySelectList
/* ‘===
‘ NAME: sprocSurveySelectList
‘ DATE CREATED: October 5, 2005
‘ CREATED BY: Shawn Livermore (shawnlivermore.blogspot.com)
‘ CREATED FOR: ASP.NET 2.0 - Instant Results
‘ FUNCTION: Returns a list of surveys from the database.
‘===
*/

as
select * from Survey

❑ By modifying this stored procedure to select from the modified view, rather than the
Survey table directly, you can obtain the fields needed to display the number of
responses for the surveys.

6. Change the select statement to read, Select * from viewNumberResponsesBySurvey and
click Save.

❑ The new stored procedure should look exactly like the code excerpt below:

ALTER PROCEDURE dbo.sprocSurveySelectList
/* ‘===
‘ NAME: sprocSurveySelectList
‘ DATE CREATED: October 5, 2005
‘ CREATED BY: Shawn Livermore (shawnlivermore.blogspot.com)
‘ CREATED FOR: ASP.NET 2.0 - Instant Results
‘ FUNCTION: Returns a list of surveys from the database.
‘===
*/

as
select * from viewNumberResponsesBySurvey

13

Modifying the Wrox Survey Engine

749516 bc04.qxp 2/9/06 11:44 AM Page 13

7. Next, modify the user interface to provide the visibility to the new information in the
GridView. Double-click the webform Admin.aspx to open the form in Design View. Then, right
click the GridView control and select Edit Columns. In the Edit Columns screen, add a bound
column, with the HeaderText value of # Columns and the DataField property of Responses.
Click OK, and save the form.

8. Run the project, log in to the site, and view the Administration grid. You should see the # Responses
column with the number of responses listed for each survey, as displayed in Figure 4-4.

Figure 4-4

Now that you have walked through an example enhancement, there are plenty more ideas that may flow
from this direction in conducting surveys online.

14

Chapter 4

749516 bc04.qxp 2/9/06 11:44 AM Page 14

5
Modifying the Wrox CMS

This chapter has focused mainly on the database aspects of the CMS. That allowed you to focus on
important concepts that are the basis of the CMS without being caught up with explaining loads of
code that isn’t really important. So you surely noticed this is quite a bare-bones CMS without eye
candy and cool features. However, you have a good foundation to build on, implementing those
features that meet your own or you customer’s expectations. With the concepts and techniques
you learned in this chapter, you should now able to expand this CMS with your own features.
Some examples of possible extensions include:

1. Display extended information about the published content item. Instead of just showing
the title and the body text, you could display information like the date the item was
published and last updated, and the author that created the article.

2. Content rating. Let your visitors rate the item to show their opinion about it. You could
collect the user’s rating with a simple user control and display the results (with a bar
graph for example) with another user control.

3. User feedback. A common extension for a CMS-driven site like the one presented in this
chapter is to allow visitors to respond on the content; this is a good way for you to get
feedback from your visitors, while at the same time the contributions may add to the
value of it, increasing the chance that others might read it.

Another important feature is a hit counter. It would be interesting to know how many people actually
viewed your content item. This is interesting for you to find out how popular an article is. It can
also be interesting to your visitors, as it might give an indication whether the content item is worth
reading. The next walkthrough shows you how to implement the hit counter.

Design Considerations
There are a few ways to implement a hit counter for each content item in your site. In all cases, you
need a way to store information about the ID of the content item and the number of times it has
been viewed. Since the entire CMS is database-driven, it makes a lot of sense to store this information
in the database as well. A simple table, called PageView, with a column that holds the content
item’s ID and a counter that tracks the number of page views is more than enough.

749516 bc05.qxp 2/9/06 11:46 AM Page 15

The next consideration is where you actually count the article. At first, the stored procedure that
retrieves the content item from the database, sprocContentSelectSingleItem, seems like the most
logical place. After all, when the article is retrieved from the database, you know it will be presented on
the web site in some form. However, this same stored procedure is also used to retrieve a content item in
the Management section. This means that whenever you want to edit the item, you also increase the
counter, resulting in distorted statistics.

Taking that into account, the best place to track the page view is in the ContentDetail.aspx page itself.
On that page, you know the content item that is being requested so it’s easy to update the page count in
the database. To make things easy to manage, it’s best to create a separate class called Logging with a
method like LogContentItemRead to update the database. Using a separate class enables you to add
other logging capabilities, like keeping track of the visitor’s IP address, the date and time the content
item was requested, and so on, at a later stage.

To implement this class, and the data access code that it requires, follow these steps:

1. Inside the BusinessLogic folder, found in the special App_Code folder in the root of the site, create
a new class and call it Logging.

2. Add a shared Sub called LogContentItemRead that accepts an Integer (the ID of the content
item in the database) and have it call a method in the data access layer with the same name and
signature. You should end up with code like this:

Public Shared Sub LogContentItemRead(ByVal contentId As Integer)
ContentDB.LogContentItemRead(contentId)

End Sub

3. Inside the DataAccess folder, also located in the App_Code folder, create a new class and name
it LoggingDB. At the top of the file, add an Imports statement for the System.Data and the
System.Data.SqlClient namespaces and then create a Sub that has the same signature as the
one in the business layer, like this:

Public Shared Sub LogContentItemRead(ByVal contentId As Integer)

End Sub

4. Inside the Sub, write code that sends the ID of the content item to a stored procedure called
sprocPageViewUpdateSingleItem. You’ll need to create a connection and a command object,
pass a single parameter and then use ExecuteNonQuery to send it to the database. You also
need to add an Imports statement for System.Data and System.Data.SqlClient. The body
for the method should end up like this:

Using myConnection As New SqlConnection(AppConfiguration.ConnectionString)
Dim myCommand As SqlCommand = New SqlCommand _

(“sprocPageViewUpdateSingleItem”, myConnection)

myCommand.CommandType = CommandType.StoredProcedure
myCommand.Parameters.AddWithValue(“@contentId”, contentId)
myConnection.Open()
myCommand.ExecuteNonQuery()
myConnection.Close()

End Using

16

Chapter 5

749516 bc05.qxp 2/9/06 11:46 AM Page 16

5. With the business and data access layer code written, the next step is to change the database. Open
the Database Explorer in Visual Web Developer and create a new table. (Right-click the Tables
node in your database and choose Add New Table.) Create a table with the following columns:

Column Name Data Type Allow Nulls Remarks

Id int No Make this column an Identity column by
setting Identity Specification to True on the
Column Properties dialog. Also make this
column the primary key by selecting the
column and then clicking the Key icon on
the toolbar.

ContentId int No This column holds the Id of the content
item being counted.

PageViews int No This column holds the number of items the
content item has been viewed.

❑ Save the table as PageView.

6. To ensure the ContentId column can only hold IDs of articles that exist in the Content table, you
need to create a relation between the two tables. To do that, right-click the Database Diagrams
node in the Database Explorer and choose Add New Diagram. If this is the first diagram you are
adding to the database, Visual Web Developer offers to create a few required tables and procedures.
Click Yes to have those objects created.

7. In the Add Table dialog, add the Content table and the PageView table you just created.

8. Drag the Id column of the Content table onto the ContentId column of the PageView table. A
dialog appears that allows you to define the behavior of the relations. The defaults are fine, so
click OK twice to create the relation.

9. When you now save the diagram pressing Ctrl+S, the relation is saved in the database as well.

10. Just like all the other data access code, the PageView table will be updated with a stored procedure.
Right-click the Stored Procedures node and choose Add New Stored Procedure. Add the following
code that inserts a new record in the PageView table only the first time a specific content item is
requested, and updates that record on all subsequent requests. Call the procedure
sprocPageViewUpdateSingleItem:

CREATE PROCEDURE sprocPageViewUpdateSingleItem

@contentId int

AS

IF NOT EXISTS (SELECT 1 FROM PageView WHERE ContentId = @contentId)
BEGIN
INSERT INTO PageView (ContentId, PageViews) VALUES (@contentId, 1)

END
ELSE
BEGIN
UPDATE PageView SET PageViews = PageViews + 1 WHERE ContentId = @contentId

END

17

Modifying the Wrox CMS

749516 bc05.qxp 2/9/06 11:46 AM Page 17

11. The final step in the page view counter process is to modify the ContentDetail.aspx page in the
root of the site so it updates the PageView table in the database. In that page, right below the
line that sets the BodyText label, add the following code:

litIntroText.Text = contentItem.IntroText
litBodyText.Text = contentItem.BodyText
Logging.LogContentItemRead(contentId)

End If

12. Finally, save any file you may have open, and then open the site in your browser. Select a content
type, then a category, and click one of the content items. Repeat this process for a few other items
in the site. When you now look in the PageView table in the database, you’ll see the content items
you viewed, and the number of times you viewed each item.

The next step in the walkthrough is displaying the page count on each content detail page. The fix for
this requires four changes: first you’ll need to create a PageView property on the Content class, and
then add support for this property in the GetItem method in the ContentDB class. The third change is
in the stored procedure that gets the content item from the database. Finally, you need to display the
number of page views on the content detail page, so a visitor can see how popular a particular item is.
The next portion of this walkthrough guides you through each of these steps:

1. Open the Content class in the BusinessLogic folder and add a private Integer field called
_pageView at the top of the file. At the end of the file, before the public methods, add a public
property called PageView that uses the _pageView backing variable:

Public Property PageView() As Integer
Get
Return _pageView

End Get
Set(ByVal value As Integer)
_pageView = value

End Set
End Property

2. Open the file ContentDB.vb file in the DataAccess folder and in the section that stores the values
from the database in the public properties for the Content item, add a line that assigns the
PageView property a value only when the item returned from the database does not contain a
NULL value, like this:

theContentItem.Visible = _
myReader.GetBoolean(myReader.GetOrdinal(“Visible”))

If Not myReader.IsDBNull(myReader.GetOrdinal(“PageViews”)) Then
theContentItem.PageView = myReader.GetInt32(myReader.GetOrdinal(“PageViews”))

End If
End If

3. Open the stored procedure called sprocContentSelectSingelItem and add the PageView’s
column from the PageView table to the SELECT list. Don’t forget to add a comma after Content
.Visible. Then modify the FROM clause so it uses a LEFT OUTER JOIN to link the Content table
to the PageView table. It’s important to use a left join because the first time the content item is
viewed, there is no matching record in the PageView table. With a normal INNER JOIN, this
would prevent the entire content item from being returned. With the left join, the content item is
returned, regardless of the presence of a record in the PageView table. Your stored procedure
should contain the following code:

18

Chapter 5

749516 bc05.qxp 2/9/06 11:46 AM Page 18

Content.Visible,
PageView.PageViews

FROM
Content
LEFT OUTER JOIN PageView ON Content.Id = PageView.ContentId

WHERE

4. Next you should modify the ContentDetail.aspx page. First, in the markup of the page, right below
the <h1> tag type some descriptive text like “This page has been viewed times”. Next, drag an
<asp:Literal> control from the toolbox between the words viewed and times. Call this literal
control litPageView. You can format the text in any way you want; for example, you can wrap it
in a <div> tag with a class applied, add
 tags before and after it, and so on.

5. Switch to the code-behind for the page and then assign the Text property of the Literal con-
trol the value from the PageView property of the Content object, just as is done with the other
properties. However, because the PageView property is an Integer, and the Text property of
the Literal control is a string, you’ll need to convert the PageView to a string first:

litBodyText.Text = contentItem.BodyText
litPageView.Text = contentItem.PageView.ToString()
Logging.LogContentItemRead(contentId)

6. Finally, save all files you may have open and browse to the site by pressing Ctrl+F5. Select a
content type and a category and then open a content item. You’ll see the number of times the
item has been viewed. Refresh the page a couple of times in your browser and you’ll see the
page counter increase, as shown in Figure 5-1.

Figure 5-1

With this modification in place, you have a nice mechanism to track the usage and popularity of the content
items you publish on your site. You can even extend this modification, by adding a page to the Management
section that lists all the content items and the number of page views they have received.

19

Modifying the Wrox CMS

749516 bc05.qxp 2/9/06 11:46 AM Page 19

749516 bc05.qxp 2/9/06 11:46 AM Page 20

6
Modifying the Wrox Blog

Since blogging is in fact a relatively simple concept, the Wrox Blog is already pretty feature complete.
However, there are still a few modifications you can make to the Wrox Blog application:

1. Implement paging. The BlogEntries user control now displays all the blog entries that
have been published within a certain category. If you blog a lot, this list may grow very
long, making it hard to load and read the page. By using paging, where you show only,
say, 20 records per page, things become a lot easier for the user.

2. Implement a detail page or view. The BlogEntries control now displays all the infor-
mation of each blog entry, including its publication date, title, and body text. You could
create a new panel on the BlogEntries control that displays the body text for a single
blog item using GetBlogEntry. Then you can remove it from the blog list, and add a link
like “See full blog” that shows the body text as well.

3. User Comments. One of the reasons why blogs are so popular is because everyone can
create them, but more importantly, everyone can respond to them. User comments can
really contribute to the impact a blog may have.

In the next section, you’ll walk through implementing the user comments feature. This feature
requires three changes. First, you’ll need to change the BlogEntries control so it displays Add
Comment and View Comments links. Next, you’ll need to create a form that allows a user to enter
a simple comment that is saved in the database. The final change involves adding code that
retrieves the comments from the database and displays them on the site.

1. Open the BlogEntries.ascx user control and just before the closing tag of the
ItemTemplate of the DataList, add two link buttons used to show the comments and to
enter a comment. Link the CommandArgument of each link to the ID of the blog entry, just
as is done with the Edit link. You should end up with code like this:

<asp:LinkButton id=”lnkAddComment” runat=”server” CommandName=”AddComment”
Text=”Add Comment” CssClass=”EditLink” CommandArgument=’<%#Eval(“Id”)%>’>

</asp:LinkButton>
<asp:LinkButton id=”lnkShowComments” runat=”server” CommandName=”ShowComments”

Text=”Show Comments” CssClass=”EditLink”
CommandArgument=’<%#Eval(“Id”)%>’>
</asp:LinkButton>

749516 bc06.qxp 2/9/06 11:23 AM Page 21

22

Chapter 6

2. Add two new panels right below the pnlAddEditBlogEntry panel, and call them pnlAdd
Comment and pnlShowComments. Make the panels hidden by default by setting their Visible
property to False.

3. Write an event handler for the DataList control’s ItemCommand that checks the CommandName
and then shows the appropriate panel. Note that this is a different handler than the EditCommand
you saw earlier. Your code should look like this:

Protected Sub dlBlogEntries_ItemCommand(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataListCommandEventArgs) _
Handles dlBlogEntries.ItemCommand

pnlAddEditBlogEntry.Visible = False
pnlBlogEntries.Visible = False
Select Case e.CommandName.ToLower()
Case “addcomment”
pnlAddComment.Visible = True
ViewState(“BlogEntryCommentId”) = e.CommandArgument

Case “showcomments”
pnlShowComments.Visible = True
‘ TODO

End Select
End Sub

When you now open the Wrox Blog in your browser, you can click the Add Comment or Show
Comments links. The list with blog entries will disappear, and show one of the (empty) panels instead.

Next it’s time to create functionality that allows a user to create a new comment. You should start by
adding a table called Comments to the database, together with a stored procedure (or query) to insert
the new comment.

1. Open up the database (either through Visual Web Developer for a SQL Server database or
directly in Microsoft Access when you’re using an Access database for the blog) and add a new
table called Comment with the following specifications:

Column Name Data Type Data Type
SQL Server Microsoft Access Description

Id int (Identity and AutoNumber This is the unique ID of
primary key) (primary key) the comment and will

automatically get a
value whenever a new
comment is inserted.

PostersName nvarchar(50) Text (50) The name of the poster
of the comment.

Body nvarchar(MAX) Memo The comment itself.

BlogEntryId int Number The ID of the blog
entry this comment
belongs to.

749516 bc06.qxp 2/9/06 11:23 AM Page 22

2. Next, add a stored procedure (if you’re using SQL Server) or a query (if you’re using an Access
database) to the database called sprocBlogEntryInsertComment that inserts a new comment
for a blog entry. For SQL Server, the code should look like this:

CREATE PROCEDURE sprocBlogEntryInsertComment

@postersName nvarchar(50),
@body nvarchar(MAX),
@blogEntryId int

AS

INSERT INTO
Comment
(
PostersName,
Body,
BlogEntryId

)
VALUES
(
@postersName,
@body,
@blogEntryId

)

❑ For Microsoft Access the query should look like this:

INSERT INTO Comment (PostersName, Body, BlogEntryId) VALUES(?, ?, ?)

3. Add some controls to the panel pnlAddComment you added earlier so a user can enter a name
and the comment. You’ll need a text box for the poster’s name and one for the actual comment.
If you want, you can also add validation controls to ensure that required fields are filled in. You
also need a button that saves the comment in the database. The code for the Save button’s
Click event should look like this:

Protected Sub btnAddComment_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnAddComment.Click

BlogManager.SaveComment(txtPostersName.Text, _
txtCommentBody.Text, Convert.ToInt32(ViewState(“BlogEntryCommentId”)))

pnlAddComment.Visible = False
pnlBlogEntries.Visible = True
txtPostersName.Text = “”
txtCommentBody.Text = “”
LoadData()

End Sub

4. The previous code calls a method on the BlogManager class in the business layer that simply for-
wards the data to a method in the data access layer. The business layer code should look like this:

Public Shared Sub SaveComment(ByVal postersName As String, _
ByVal body As String, ByVal blogEntryId As Integer)

BlogManagerDB.SaveComment(postersName, body, blogEntryId)
End Sub

23

Modifying the Wrox Blog

749516 bc06.qxp 2/9/06 11:23 AM Page 23

❑ While the method in the data access layer looks like this:

Public Shared Sub SaveComment(ByVal postersName As String, _
ByVal body As String, ByVal blogEntryId As Integer)

Dim myFactory As DbProviderFactory = DbProviderFactories.GetFactory(_
AppConfiguration.ConnectionStringSettings.ProviderName)

Using myConnection As DbConnection = myFactory.CreateConnection()

myConnection.ConnectionString = _
AppConfiguration.ConnectionStringSettings.ConnectionString

myConnection.Open()

Dim myCommand As DbCommand = myConnection.CreateCommand()

myCommand.CommandText = “sprocBlogEntryInsertComment”
myCommand.CommandType = CommandType.StoredProcedure

Dim param As DbParameter

param = myCommand.CreateParameter()
param.ParameterName = DalHelpers.ReturnCommandParamName(“postersName”)
param.DbType = DbType.String
param.Value = postersName
myCommand.Parameters.Add(param)

param = myCommand.CreateParameter()
param.ParameterName = DalHelpers.ReturnCommandParamName(“body”)
param.DbType = DbType.String
param.Value = body
myCommand.Parameters.Add(param)

param = myCommand.CreateParameter()
param.ParameterName = DalHelpers.ReturnCommandParamName(“blogEntryId”)
param.DbType = DbType.Int32
param.Value = blogEntryId
myCommand.Parameters.Add(param)

myCommand.ExecuteNonQuery()
End Using

End Sub

This code inserts the new comment in the database and associates it with a blog entry through the
BlogEntryId column. This code should look really familiar by now.

The final step in the process is displaying the comments that belong to a specific blog entry. To do that,
you need to add a DataList control to the panel pnlShowComments and bind it to a DataSet returned
from the business and data access layer whenever the Show Comments button is clicked.

1. Start by adding a DataList control to the panel pnlShowComments in the BlogEntries.ascx control.
Add an ItemTemplate inside the DataList control’s tags and then add some data binding code to
display the comment’s title and text, like this:

<asp:DataList ID=”lstComments” runat=”server”>

24

Chapter 6

749516 bc06.qxp 2/9/06 11:23 AM Page 24

<ItemTemplate>
<h2>Posted by <%#Eval(“PostersName”)%></h2>
<div><%#Eval(“Body”)%></div>

</ItemTemplate>
</asp:DataList>

2. Next, add a method to both the BlogManager and BlogManagerDB classes in the business layer
and the data access layer, respectively, and call them GetComments. Make sure the method
accepts a blogEntryId as an Integer and returns a DataSet. The method in the business layer
should call the one in the data access layer, just as most of the other business layer methods in
this chapter. GetComments in the data access layer should look like this:

Public Shared Function GetComments(ByVal blogEntryId As Integer) As DataSet
Dim myDataSet As DataSet = New DataSet()

Dim myFactory As DbProviderFactory = DbProviderFactories.GetFactory(_
AppConfiguration.ConnectionStringSettings.ProviderName)

Using myConnection As DbConnection = myFactory.CreateConnection()
myConnection.ConnectionString = _

AppConfiguration.ConnectionStringSettings.ConnectionString
myConnection.Open()

Dim myCommand As DbCommand = myConnection.CreateCommand()

myCommand.CommandText = “sprocCommentSelectList”
myCommand.CommandType = CommandType.StoredProcedure

Dim param As DbParameter

param = myCommand.CreateParameter()
param.ParameterName = DalHelpers.ReturnCommandParamName(“blogEntryId”)
param.DbType = DbType.Int32
param.Value = blogEntryId
myCommand.Parameters.Add(param)

Dim myDataAdapter As DbDataAdapter = myFactory.CreateDataAdapter()
myDataAdapter.SelectCommand = myCommand
myDataAdapter.Fill(myDataSet)
myConnection.Close()
Return myDataSet

End Using
End Function

3. Add a stored procedure or query to the database. The procedure should be called sprocGet
Comments. For SQL Server, it should contain this code:

CREATE PROCEDURE sprocCommentSelectList

@blogEntryId int

AS

SELECT
PostersName,

25

Modifying the Wrox Blog

749516 bc06.qxp 2/9/06 11:23 AM Page 25

Body
FROM
Comment

WHERE
BlogEntryId = @blogEntryId

ORDER BY
Id DESC

❑ For the Access database it should contain this code:

SELECT
PostersName,
Body

FROM
Comment

WHERE
BlogEntryId = ?

ORDER BY
Id DESC;

4. The final step in displaying the comments is to call the GetComments method whenever the
ShowComments panel becomes visible. To do that, locate the code you added in the event handler
for the ItemCommand of the blog list, and replace the TODO placeholder with the following code:

Case “showcomments”
pnlShowComments.Visible = True
lstComments.DataSource = _

BlogManager.GetComments(Convert.ToInt32(e.CommandArgument))
lstComments.DataBind()

End Select

With this Comments feature, you have a full-blown blogging application that not allows you to create
blog entries and share them with the world, but also enables your visitors to react to the things you have
written. Have fun blogging!

26

Chapter 6

749516 bc06.qxp 2/9/06 11:23 AM Page 26

7
Modifying the Wrox

Photo Album

Although the photo album is fairly concise in its scope, it likely does not contain all of the extra
features and enhancements that you might want to have. Some possible enhancements to the
photo album could include:

❑ Implement paging for the DataList control that displays the images in a grid. This way,
the images would be displayed in the same grid-like fashion, but also span across an
unlimited number of pages instead of requiring the user to scroll down the page.

❑ Create an email alert feature that allows users to sign up for alerts whenever new images
are added to the photo album.

❑ Create a new theme or skin for the website to use in its formatting and color scheme.

❑ Create a slide show feature in JavaScript to show the images one at a time, with a fade
effect between images.

❑ Create a feature that would allow website visitors to ask questions or make comments
about a particular image on the photo album to the photographer or web site owner.

If you want to take on the last of the above proposed features, creating a way for viewers to ask
questions about any image and track feedback, there would be several areas that you would need
to modify within the application to accomplish this. This feature would infer that for any images’
detailed view page, there would be an opportunity for the web site viewer to enter text and save
the text to the database for all to see. All feedback to such inquiries would be posted near the
image for future visitors to observe. This would provide an overall more interactive experience for
the user and the photographer alike.

To implement this feature, the following steps would be required:

1. In VWD, open the database explorer by selecting the View | DataBase Explorer menu
selection. Find your database under the database connections node of the tree view. If
your database is not listed, right-click the data connections node in the tree view, select
the add connection option, select the Microsoft SQL Server File option, and browse to the
PhotoDB.mdf file in the App_Data folder of the site. This should bring up your connec-
tion within the database Explorer window.

749516 bc07.qxp 2/9/06 11:47 AM Page 27

2. Now that you have a valid database tree, expand it to see the Tables node, and drill down to the
Photo table. Right-click the Tables folder and select the Add New Table option. The new table
can be named Comment, and will serve as the repository for comments made and answered on
any of the photos in any collection. The field names and data types to be used in the comment
table would be as follows:

Field DataType Description

CommentID Integer The auto-generated ID for the comment record.

photoID Integer The ID of the photo to which this comment applies.

Description varchar(MAX) The actual text of the comment or question.

Timestamp Datetime The auto-generated insert date and time of the comment.

email varchar(MAX) The email address of the user.

3. Save the table by clicking File➪Save Comment.

4. From Design View, shown in Figure 7-1, select the commentID field, and in the Identity
Specification property, set it to Yes. Save the table by clicking File➪Save Comment.

Figure 7-1

28

Chapter 7

749516 bc07.qxp 2/9/06 11:47 AM Page 28

5. From this same Design View, select the timestamp field, and set the Default Value property to
GetDate() (see Figure 7-2). This will allow the database to record the date and time for the insert
at the time it occurs. Save the table by clicking File➪Save Comment.

Figure 7-2

6. In the Solution Explorer, right click the App_Code\Bll folder and select the Add New Item option.
Select a new class, and name it Comment.vb. In the comment.vb class, add the following code:

Imports Microsoft.VisualBasic

Public Class Comment

Private _photoid As Integer
Private _description As String
Private _email As String

Public Sub New(ByVal mPhotoID As String, ByVal mDescription As String, ByVal
mEmail As String)

MyBase.New()
_photoid = mPhotoID

29

Modifying the Wrox Photo Album

749516 bc07.qxp 2/9/06 11:47 AM Page 29

_description = mDescription
_email = mEmail

End Sub

Public ReadOnly Property PhotoID() As Integer
Get

Return _photoid
End Get

End Property

Public ReadOnly Property Description() As String
Get

Return _description
End Get

End Property

Public ReadOnly Property Email() As String
Get

Return _email
End Get

End Property

End Class

7. Open up the PhotoDB.vb class in the App_Code\Dal folder. Add a new function entitled
InsertComment. This function will accept a comment class object as a parameter and add the
comment to the comment table within the database. Use the following as the code for the
InsertComment function:

Public Shared Function InsertComment(ByVal c As Comment) As Boolean
Try

‘Declare the objects for data access
Dim conn As New SqlConnection()
Dim cmd As New SqlCommand()
‘set the connection string
conn.ConnectionString = PhotoDB.ConnectionString
cmd.Connection = conn
conn.Open()
cmd.CommandType = CommandType.StoredProcedure
cmd.CommandText = “add_comment”
‘ Create a SqlParameter for each parameter in the stored proc.
Dim photoid As New SqlParameter(“@photoid”, c.PhotoID)
Dim description As New SqlParameter(“@description”, c.Description)
Dim email As New SqlParameter(“@email”, c.Email)
‘add each parameter to the command object
cmd.Parameters.Add(photoid)
cmd.Parameters.Add(description)
cmd.Parameters.Add(email)
cmd.ExecuteNonQuery()

Return True

Catch ex As Exception

30

Chapter 7

749516 bc07.qxp 2/9/06 11:47 AM Page 30

Throw (ex)
End Try

End Function

8. Right click the stored procedures node in the Database Explorer, and select the Add New Stored
Procedure option. Then, enter the following for the stored procedure:

CREATE PROCEDURE dbo.add_comment
(
@photoID int,
@description varchar(1000),
@email varchar(300)
)

AS
INSERT INTO comment

(photoID, description, email)
VALUES (@photoID, @description, @email)

9. In the Solution Explorer, navigate to the root of the site. Open up the Viewphoto.aspx WebForm
file, and click the Source View to see the HTML markup within the page. In the Viewphoto.aspx
WebForm, add a new SqlDataSource with the following HTML markup in order to display
comments with their corresponding images. This will select records from the comment table
based on the photoID passed to the page as a querystring variable. The WHERE clause should fil-
ter the records based on the photoID.

<asp:SqlDataSource ID=”SqlDataSource2” runat=”server” ConnectionString=”<%$
ConnectionStrings:ConnectionStringComments %>” SelectCommand=”SELECT [description],
[timestamp], [email] FROM [comment] WHERE ([photoID] = @photoID)”
ProviderName=”System.Data.SqlClient”>

<SelectParameters>
<asp:QueryStringParameter Name=”photoID” QueryStringField=”photoID”

Type=”Int32” />
</SelectParameters>

</asp:SqlDataSource>

10. Now there are two SqlDataSource controls on the page. The first data source control, named
SqlDataSource1, is for displaying the existing image and description, and so on. And the other
control, named SqlDataSource2, is for displaying comments made on this particular image.
Scroll towards the middle of the page, after the end tag of the DataList ASP.NET data control,
and add a new DataList control to the form from the Toolbox. In the Smart Tag dialog for this
new DataList, configure it to connect to the new SqlDataSource2 data source, and pull the
description, timestamp, and email fields. Format the layout or positions of the HTML and
database field inserts to your desire. The end result of a configured data list as described is dis-
played below:

<asp:DataList ID=”DataList2” runat=”server” DataSourceID=”SqlDataSource2”>

<ItemTemplate>
<asp:Label ID=”descriptionLabel” runat=”server” Text=’<%#

Eval(“description”) %>’>
</asp:Label> - (<i><asp:Label ID=”emailLabel” runat=”server” Text=’<%#

Eval(“email”) %>’></asp:Label> on <asp:Label ID=”timestampLabel” runat=”server”
Text=’<%# FormatDate(Eval(“timestamp”)) %>’></asp:Label></i>)

31

Modifying the Wrox Photo Album

749516 bc07.qxp 2/9/06 11:47 AM Page 31

</ItemTemplate>

</asp:DataList>

11. Next, add a few controls to the form to allow other users to insert comments into the system.
First, add two TextBox controls, txtEmail and txtDesc, used to capture the user’s email
address and comments. Make the txtDesc field’s TextMode=”MultiLine” and set the Height
property to 50px, so it extends to several lines. Add a button to the form below these two text
boxes, with an OnClick=”AddComment”. This means the button will fire a new procedure when
it is clicked. This procedure is called AddComment, which will create a new comment class
object, and pass in the photoID, user’s email address, and description to the class constructor.
Then, it will pass the new comment class object to the data access class for insertion into the
database. See below for the code for both the form fields and the AddComment function:

Want to comment on this picture?

<asp:TextBox ID=”txtEmail” runat=”server”></asp:TextBox>Your Email Address

<asp:TextBox ID=”txtDesc” runat=”server” Height=”50px” Width=”200px”
TextMode=”MultiLine”></asp:TextBox>
Comment

<asp:Button ID=”Button1” runat=”server” Text=”Save” OnClick=”AddComment” />

<script runat=”server”>

Protected Sub AddComment(ByVal sender As Object, ByVal e As System.EventArgs)

If txtDesc.Text <> “” And txtEmail.Text <> “” Then

Dim c As New Comment(Request.QueryString(“PhotoID”), txtDesc.Text,
txtEmail.Text)

‘hand off the new comment class object to the data access class to
allow for insertion

Dim result As Boolean = DataAccessLayer.InsertComment(c)

‘clear the fields
txtEmail.Text = “”
txtDesc.Text = “”

‘refresh the data list of comments to show this one
Page.DataBind()

End If

End Sub
</script>

32

Chapter 7

749516 bc07.qxp 2/9/06 11:47 AM Page 32

12. Run the project, clicking on the collection of your choice, and one of the photos in the collection.
You will see the new comment area at the bottom. Add a comment and your screen would look
like Figure 7-3.

Figure 7-3

With this proposed comments feature, you allow interactivity between the website author and the user,
making the site even more engaging. It’s a great way to involve the user in the future of the site, and
draw them back for more of your great photography!

33

Modifying the Wrox Photo Album

749516 bc07.qxp 2/9/06 11:47 AM Page 33

749516 bc07.qxp 2/9/06 11:47 AM Page 34

8
Modifying the Customer

Support Site

One possible extension to the Customer Support Site is to allow your users to contact you through
a Contact form. That way, your users can ask you questions about your product. These questions
and their answers can then be added to the Frequently Asked Questions list on the site.

The first part of this section guides you through the process of creating such a feature. It shows
you how to create the form and how to send an email to your support department when a user
fills in the form. As a bonus, you’ll also learn how to store the user’s details in a profile so repeat-
ing customers don’t have to enter their details over and over. To implement the Contact form, fol-
low these steps:

1. Start by adding a new page called Contact.aspx in the ContentFiles folder. Base this page
on the MainMaster.master page.

2. In the MainMenu.ascx control in the Controls folder, add a link to this new page so users
can access it.

3. On the Contact page, create a form with text boxes for the user’s name, email address, and
their question or remarks. Name these controls txtUserName, txtEmailAddress, and
txtComments, respectively. Set the TextMode property of txtComments to MultiLine.
Add a button called btnSave with the text of Send Comments.

4. Add a checkbox called chkRememberMe with a descriptive text offering the user to have
their details saved for them. Next, add a label called lblStatus that is used to tell the
user their message was sent successfully.

5. If you want, you can change the page layout to whatever you see fit. You can use tables
and labels to improve the readability of the page.

6. Double click the button in Design View so VWD adds the required code to handle the
Click event of the button.

7. Switch to Design View again and double click anywhere on the page. This adds the code
to handle the Page_Load event.

749516 bc08.qxp 2/9/06 11:25 AM Page 35

8. Next, open the Web.config file and within the <system.web> element add the following code
that adds a few properties to the Profiles for the current site:

<anonymousIdentification enabled=”true” />
<profile>
<properties>
<add name=”Name” allowAnonymous=”true” />
<add name=”EmailAddress” allowAnonymous=”true” />

</properties>
</profile>

9. If you haven’t already done so during setup, configure the application to use a provider that
supports the Profile feature. To do so, choose Website➪ASP.NET Configuration in VWD. In the
Web Site Administration Tool, click Provider Configuration and then click Select a Single
Provider for all Site Management Data. Make sure AspNetSqlProvider is selected and click
the Test link to ensure the provider works correctly.

10. Return to the Web.config file and scroll all the way to the end of the file until you see the <system
.net> node. Change the host attribute of the <network> element to the name of the mail server
you are using for sending mail. Depending on your setup, this can be localhost or the SMTP server
of your provider.

11. At the top of the page, add an Imports statement for System.Net.Mail and then add the
following code in the button’s Click event handler that you added in Step 6:

Protected Sub btnSave_Click(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles btnSave.Click

Dim subject As String = “Response from the Web Site”
Dim message As String = String.Format(“User {0} with the “ & _
“email address: {1} left the following message “ & ControlChars.CrLf & “{2}”, _
txtUserName.Text, txtEmailAddress.Text, txtComments.Text)

Dim mySmtpClient As SmtpClient = New SmtpClient()
Dim myMessage As MailMessage = New MailMessage(_

“You@YourProvider.Com”, “You@YourProvider.Com”, subject, message)

myMessage.IsBodyHtml = False
mySmtpClient.Send(myMessage)

If chkRememberMe.Checked Then
Profile.Name = txtUserName.Text
Profile.EmailAddress = txtEmailAddress.Text

Else
Profile.Name = String.Empty
Profile.EmailAddress = String.Empty

End If

lblStatus.Text = “Your message was sent successfully”
End Sub

❑ Be sure to replace You@YourProvider.Com with your email address. This code formats
the message body by taking the values from the textboxes and appending it to the string
message. Then a new MailMessage is created which is eventually sent by the Send
method of the SmtpClient object. At the end of the method, the user’s details are stored
in the site’s Profile database if the user chose to save the details.

36

Chapter 8

749516 bc08.qxp 2/9/06 11:25 AM Page 36

12. The final step in the Contacts page is to pre-populate the TextBox controls with the user’s details
if they exist in the profile. To do that, add the following code to the Page_Load event handler
that you added in Step 7:

If Not Page.IsPostBack Then
txtUserName.Text = Profile.Name
txtEmailAddress.Text = Profile.EmailAddress

End If

With this Contact page done, users can now send a message to the support department, requesting more
information or making a suggestion about a product. To make it easier for returning users to fill in the
form, the Contact page saves the user’s details using the new ASP.NET 2.0 Profile feature. This information
is then used to fill the text boxes when the Contact page is loaded again on a subsequent visit.

With the Customer Support Site you have seen most of the features required to provide your users with
enough information and support. However, there may be circumstances where you need more from a
support site. With the current site, it’s relatively easy to create new features such as:

1. Search by serial number. If you have a database with serial numbers for the products you sell,
you can link those to downloadable files and frequently asked questions. That way, a user can
quickly find the relevant information simply by entering the serial number of their product.

2. Integration with a web shop. In the next chapter you’ll learn how to create a web shop. You can
integrate the web shop with the Customer Support Site to enhance the user’s experience. This
way, they can browse products, order them, and download support files for those products all
from one single web site.

3. Implement an “other users download...” feature. It’s a common feature to show users what
other users downloaded on the site. You could add this feature to the Downloads page where
you can display a list of links to other downloads related to the one the user is viewing. To
implement this, you’d need to keep track of which user downloads what file.

37

Modifying the Customer Support Site

749516 bc08.qxp 2/9/06 11:25 AM Page 37

749516 bc08.qxp 2/9/06 11:25 AM Page 38

9
Modifying the Wrox

WebShop

Although the WebShop already has quite some useful features, it should be easy to come up with a
list of possible extensions and enhancements. Features that come to mind are:

❑ Reporting: It would be very useful to have reports about customers, their buying behav-
ior, and sales figures.

❑ Export Capabilities: The finalized orders are now stored in the database. To process them,
you either need a reporting solution or a way to export the orders to another system.

❑ Product Reviews: Let your customers tell others what they think about your products.

❑ Extended Maintenance Section: The current maintenance section is pretty limited. A
more comprehensive version could allow you to update existing products, manage the
product categories and possibly your customer list.

❑ Different Pricing Mechanism: Each product in the WebShop has a fixed price for all cus-
tomers. You could change the site so that returning users get a discount. You could also
charge for shipping costs; either by product, by weight, or by the entire order.

Another area for improvement is the feedback to the user. Right now, after they finalize their
order, all they get is a static text showing the order number and a thank you message. It would
look much more professional if you could email them a nicely formatted order confirmation mes-
sage that showed them exactly what they ordered. This walkthrough shows you how to imple-
ment this enhancement.

Adding E-mail Capabilities
To add e-mailing capabilities, you’ll need to make changes at four locations. First, you need to add
a static text file that serves as the template for the email. Next, you need to add a property to the
AppConfiguration class that returns the location of this template file. Then you need to create
three shared helper methods to format the contents of the email and to send it. The final step
involves modifying code in the Business Layer to send out the mail when the order has been final-
ized. In the next series of steps, you learn how to accomplish these four tasks.

749516 bc09.qxp 2/9/06 11:48 AM Page 39

1. Start by adding a new regular folder to the root of the project and call it StaticText.

2. Inside this folder, create a new text file and call it ConfirmationMessage.txt.

3. Add the following HTML to this file:

<html>
<head>
<title>Your Order at Wrox WebShop</title>

</head>
<body>
Dear customer,

Thank you for your order at Wrox WebShop. Your order number is

##OrderNumber##

Below you find a list of the products you have ordered. The goods will ship as
soon as we receive your payment.

##ShoppingCart##

Thanks

The Wrox WebShop Team

</body>
</html>

❑ You can change the contents of the template in any way you want. What’s important to
know is that the markers ##OrderNumber## and ##ShoppingCart## are placeholders
that are replaced with the actual content when the message is sent.

4. Open the file AppConfiguration.vb from the App_Code folder and add a shared, read-only
property called ConfirmationMessageLocation that has the following code:

Public Shared ReadOnly Property ConfirmationMessageLocation() As String
Get
Dim tempValue As String = “~/StaticText/ConfirmationMessage.txt”
Try
If ConfigurationManager.AppSettings.Get(“ConfirmationMessageLocation”) _

IsNot Nothing Then
tempValue = _

ConfigurationManager.AppSettings.Get(“ConfirmationMessageLocation”)
End If

Catch ex As Exception
End Try
Return HttpContext.Current.Server.MapPath(tempValue)

End Get
End Property

❑ This code reads the virtual location of the text file from the Web.config file. That value is
then translated to a physical path using Server.MapPath. The application setting that
is read by this property is added in the next step.

5. Open the Web.config file for the WebShop and add the following highlighted node under
<appSettings>:

<appSettings>
<add key=”MailFromAddress” value=”You@YourProvider.Com”/>
<add key=”ConfirmationMessageLocation”

value=”~/StaticText/ConfirmationMessage.txt”/>
</appSettings>

40

Chapter 9

749516 bc09.qxp 2/9/06 11:48 AM Page 40

With the template and code to read its location set up, the following steps show you how to add the code
that reads in the message template and constructs the personalized and formatted message. The format-
ted message will contain the contents of the shopping cart, similar to the cart shown on the web site.

1. Open the file Helpers.vb and add the following helper method:

Public Shared Function CreateGridView() As GridView
Dim myGridView As GridView = New GridView
myGridView.AutoGenerateColumns = False
myGridView.ShowFooter = True
myGridView.Width = Unit.Percentage(100)
myGridView.BorderWidth = Unit.Pixel(1)

myGridView.HeaderStyle.BackColor = System.Drawing.Color.FromName(“#ffb49f”)
myGridView.HeaderStyle.ForeColor = System.Drawing.Color.White
myGridView.HeaderStyle.HorizontalAlign = HorizontalAlign.Left
myGridView.HeaderStyle.Font.Name = “Arial”

myGridView.RowStyle.BackColor = System.Drawing.Color.White
myGridView.RowStyle.ForeColor = System.Drawing.Color.Black
myGridView.RowStyle.Font.Name = “Arial”

myGridView.FooterStyle.Font.Bold = True
myGridView.FooterStyle.Font.Name = “Arial”

Dim myGridViewColumn As New BoundField
myGridViewColumn.HeaderText = “Title”
myGridViewColumn.DataField = “Title”
myGridView.Columns.Add(myGridViewColumn)

myGridViewColumn = New BoundField
myGridViewColumn.HeaderText = “Quantity”
myGridViewColumn.DataField = “Quantity”
myGridViewColumn.ItemStyle.HorizontalAlign = HorizontalAlign.Right
myGridView.Columns.Add(myGridViewColumn)

myGridViewColumn = New BoundField()
myGridViewColumn.HeaderText = “Price”
myGridViewColumn.DataField = “Price”
myGridViewColumn.DataFormatString = “{0:c}”
myGridViewColumn.ItemStyle.HorizontalAlign = HorizontalAlign.Right
myGridView.Columns.Add(myGridViewColumn)

myGridViewColumn = New BoundField()
myGridViewColumn.HeaderText = “Total”
myGridViewColumn.DataField = “SubTotal”
myGridViewColumn.DataFormatString = “{0:c}”
myGridViewColumn.ItemStyle.HorizontalAlign = HorizontalAlign.Right
myGridViewColumn.FooterStyle.HorizontalAlign = HorizontalAlign.Right
myGridView.Columns.Add(myGridViewColumn)

Return myGridView
End Function

41

Modifying the Wrox Webshop

749516 bc09.qxp 2/9/06 11:48 AM Page 41

❑ This code creates a new GridView on the fly and formats it using the available styles
such as HeaderStyle, RowStyle, and FooterStyle. It then goes on to add four new
columns for the Title, the Quantity, the Price, and the Total of each product in the shop-
ping cart.

2. In the same Helpers.vb file, add a method that accepts a generic WebControl and returns its
rendered HTML. Note that this method is a generic method and not tied to the shopping cart or
WebShop; you could easily reuse this method to get the HTML from any control:

Public Shared Function GetHtmlFromControl(ByVal theControl As WebControl) As String
Dim myStringBuilder As StringBuilder = New StringBuilder()
Dim myStringWriter As System.IO.StringWriter = _

New IO.StringWriter(myStringBuilder)
Dim myHtmlTextWriter As HtmlTextWriter = New HtmlTextWriter(myStringWriter)
theControl.RenderControl(myHtmlTextWriter)
Return myStringBuilder.ToString()

End Function

3. Still in the Helpers.vb file, add a method that retrieves the template file, gets the HTML from the
shopping cart, and then formats and sends the email message:

Public Shared Sub SendConfirmationMessage(_
ByVal theShoppingCart As ShoppingCart, ByVal orderId As Integer, _
ByVal emailAddress As String)

Try
Dim myGridView As GridView = CreateGridView()
myGridView.DataSource = theShoppingCart.Items
myGridView.DataBind()

If myGridView.Rows.Count > 0 Then
myGridView.FooterRow.Cells(0).Text = “Totals:”
myGridView.FooterRow.Cells(3).Text = _

String.Format(“{0:c}”, theShoppingCart.Total)

Dim theSubject As String = “Your order at Wrox WebShop”
Dim theMessage As String = My.Computer.FileSystem.ReadAllText _
(AppConfiguration.ConfirmationMessageLocation)

Dim mySmtpClient As New System.Net.Mail.SmtpClient
theMessage = theMessage.Replace(“##ShoppingCart##”, _

GetHtmlFromControl(myGridView))
theMessage = theMessage.Replace(“##OrderNumber##”, orderId.ToString())
mySmtpClient.Send(“You@YourProvider.Com”, emailAddress, theSubject,

theMessage)
End If

Catch ex As Exception
End Try

End Sub

❑ This method uses the CreateGridView method to create a brand new GridView on the
fly. It then uses standard databinding to get the data from the shopping cart into the
GridView. Besides the order items (from theShoppingCart.Items) it also adds the
total for the entire order in the last column. It then reads in the message template using

42

Chapter 9

749516 bc09.qxp 2/9/06 11:48 AM Page 42

the new My class and uses the template to fill the message body. Using Replace, the
placeholders are replaced with the actual values. The ShoppingCart placeholder is
replaced with the HTML representation of the GridView using the
GetHtmlFromControl method you added in step 2. Don’t forget to change the
You@YourProvider.Com address to your own email address.

4. The final change you need to make is in the FinalizeOrder method of the ShopManager class.
Open the file ShopManager.vb from the BusinessLogic folder, locate the method and add the
following line of code:

Public Shared Function FinalizeOrder(ByVal theCustomer As Customer) As Integer
Dim orderId As Integer = ShopManagerDB.FinalizeOrder(ShoppingCart, theCustomer)
Helpers.SendConfirmationMessage(ShoppingCart, orderId, Membership.GetUser().Email)
ShoppingCart.Clear()
Return orderId
End Function

❑ That’s all there is to implementing the confirmation functionality. When you now final-
ize an order in the Wrox WebShop you get a nicely formatted HTML message similar to
Figure 9-1.

Figure 9-1

43

Modifying the Wrox Webshop

749516 bc09.qxp 2/9/06 11:48 AM Page 43

749516 bc09.qxp 2/9/06 11:48 AM Page 44

10
Modifying the Appointment

Booking System

The current Appointment Booking System has quite a few features that make it useful already, but
it shouldn’t be hard to come up with a list of its shortcomings or enhancement requests. For example,
the current application only allows appointments that start at a whole hour and that last one or
more whole hours. While this is usually fine for booking objects like conference rooms and laptops,
it may not be fine-grained enough for other type of booking objects. You could modify the application
so the user can choose an arbitrary starting time, and an end time as well, instead of just indicating
the planned duration.

Another enhancement you can make to the site is appointment validation and user feedback.
Right now, after an appointment is entered in the system there is no way to see it again, cancel it,
or change it. Also, the managers of the system have no option to cancel or move an appointment.
It would be a useful addition if you could modify appointments in the system. Whenever an
appointment is changed, the end-user could receive an e-mail with the changes and the option to
accept or reject the changes.

You could also enhance the mapping between a booking object, the working days, and the hours
the booking object is available. Right now, you have an all or nothing solution where you can
define the start and end time for all of the working days that the booking object is available. To
make this change, you need to move the start and end time columns from the BookingObject table
into the junction table BookingObjectWorkingDay. This way, you attach the start and end time on
the relation between the booking object and the working day, allowing you to determine the avail-
ability on a day-to-day basis.

While the previous suggestion allows you to change the start and end time for each working day,
you may also have the need to change the availability for individual days. Right now, a booking
object is available on one of the working days, or not. You don’t have the option to create exceptions
— for example, to keep track of the vacation an employee has taken, or for the time the booking
object is in maintenance and thus not available. The following walkthrough guides you in the process
of creating this exception functionality.

749516 bc10.qxp 2/9/06 11:50 AM Page 45

Design Considerations
Implementing the exceptions functionality requires a few additions and changes to the user interface (in
the Management section), the business and data access layers, and the database. Each of these changes is
summarized in the following sections. Once you know what to change, the walkthrough will guide you
through each of the modifications.

The Database
The database needs a table called Exception that stores the exception date and the ID of the booking
object. To add, remove, and list exception dates, you also need three stored procedures.

To take the exceptions into account when checking an appointment, you’ll need to modify the stored
procedure sprocAppointmentCheckAvailability and query this new Exception table. The same
applies to the stored procedure that gets the time sheet information (sprocTimesheetSelectList).

Business and Data Access Layer
In the BookingObjectManager and BookingObjectManagerDB class you need to create three methods
to get, create, and delete exceptions for a booking object. As usual, the methods in the business layer for-
ward their calls to the data access layer, which in turns talks to the database.

User Interface
In the Management section you’ll need to modify the CreateUpdateBookingObject.aspx page so that you
can enter and remove exception dates for a specific booking object.

In the next section you’ll see what you need to do exactly to make these changes. You’ll find the com-
plete code for the modification in the folder Chapter 10 - Appointment Booking\Modifications on the
CD-ROM or in the code download, so there ‘s no need to type all this code yourself.

Modifying the Database
Follow these steps to modify the database:

1. Open the Database Explorer window in Visual Web Developer (press Ctrl+Alt+s to open it) and
create a new table called Exception. The table should look like Figure 10-1.

Figure 10-1

❑ Set the Identity property of the Id column to Yes and make the three columns a
combined primary key by selecting all three columns and clicking the key icon on the
Database Diagram toolbar.

46

Chapter 10

749516 bc10.qxp 2/9/06 11:50 AM Page 46

2. Add a relation between this new table and the table BookingObject, joining the two on
BookingObject.Id and Exception.BookingObjectId.

3. Open the stored procedure sprocAppointmentCheckAvailability and add the following
highlighted code to the WHERE clause right below the first check that filters on BookingObject.Id:

BookingObject.Id = @bookingObjectId
-- Make sure the startdate is not in the Exception table
AND (CONVERT(varchar(8), @startDate, 112) NOT IN

(SELECT CONVERT(varchar(8), ExceptionDate, 112) FROM Exception WHERE
BookingObjectId = @bookingObjectId))

-- Make sure the enddate is not in the Exception table
AND (CONVERT(varchar(8), @endDate, 112) NOT IN

(SELECT CONVERT(varchar(8), ExceptionDate, 112) FROM Exception WHERE
BookingObjectId = @bookingObjectId))

❑ This code ensures that the availability checker returns False if someone tries to make an
appointment for a booking object that is listed in the Exception table for the requested
date.

4. Open sprocTimeSheetSelectList and add the highlighted code to the WHERE clause of the
first SELECT statement:

AND BookingObjectWorkingDay.WorkingDayId = DATEPART(dw, @selectedDate)
AND BookingObjectId NOT IN (SELECT BookingObjectId FROM Exception WHERE

CONVERT(varchar(8), ExceptionDate, 112) =
CONVERT(varchar(8), @selectedDate, 112))

) AS AvailableOnSelectedDay

❑ With this code, the procedure returns False (0) for the AvailableOnSelectedDay col-
umn when a booking object is listed in the Exceptions table.

5. As the last step in modifying the database, create three stored procedures to create, delete, and
select exceptions. You’ll find the complete code below. Note that the entire code for the modifi-
cation of the application is also available on the companion CD, so there is no need to type in all
this code by hand.

❑ This code creates the stored procedure to select exceptions:

CREATE PROCEDURE sprocExceptionSelectList

@bookingObjectId int

AS

SELECT Id, ExceptionDate FROM Exception WHERE BookingObjectId = @bookingObjectId

❑ This code creates the stored procedure to create exceptions:

CREATE PROCEDURE sprocExceptionInsertSingleItem

@bookingObjectId int,
@exceptionDate datetime

AS

IF NOT EXISTS (SELECT 1 FROM Exception WHERE BookingObjectId = @bookingObjectId

47

Modifying the Appointment Booking System

749516 bc10.qxp 2/9/06 11:50 AM Page 47

AND ExceptionDate = @exceptionDate)
BEGIN
INSERT INTO Exception
(BookingObjectId, ExceptionDate)
VALUES (@bookingObjectId, @exceptionDate)

END

❑ This code creates the stored procedure to delete exceptions:

CREATE PROCEDURE sprocExceptionDeleteSingleItem

@id int

AS

DELETE FROM Exception WHERE ID = @id

Modifying the Business and Data Access Layers
The next step is to change both the business and the data access layers.

1. Open the file BookingObjectManager.vb from the BusinessLogic folder and add the following code:

Public Shared Function GetExceptionList(ByVal bookingObjectId As Integer) _
As DataSet

Return BookingObjectManagerDB.GetExceptionList(bookingObjectId)
End Function

Public Shared Sub CreateException(ByVal bookingObjectId As Integer, _
ByVal exceptionDate As DateTime)

BookingObjectManagerDB.CreateException(bookingObjectId, exceptionDate)
End Sub

Public Shared Sub DeleteException(ByVal id As Integer)
BookingObjectManagerDB.DeleteException(id)

End Sub

❑ All three methods forward their calls to methods in the BookingObjectManagerDB
class that you should create next.

2. Open the file BookingObjectManagerDB.vb in the DataAccess folder and add the following
code to the bottom of the file:

Public Shared Function GetExceptionList(ByVal bookingObjectId As Integer) _
As DataSet

Dim myDataSet As DataSet = New DataSet()
Try
Using myConnection As New SqlConnection(AppConfiguration.ConnectionString)
Dim myCommand As SqlCommand = _

New SqlCommand(“sprocExceptionSelectList”, myConnection)
myCommand.CommandType = CommandType.StoredProcedure

myCommand.Parameters.AddWithValue(“@bookingObjectId”, bookingObjectId)

Dim myDataAdapter As SqlDataAdapter = New SqlDataAdapter()

48

Chapter 10

749516 bc10.qxp 2/9/06 11:50 AM Page 48

myDataAdapter.SelectCommand = myCommand
myDataAdapter.Fill(myDataSet)
myConnection.Close()

Return myDataSet
End Using

Catch ex As Exception
Throw

End Try
End Function

Public Shared Sub CreateException(ByVal bookingObjectId As Integer, _
ByVal exceptionDate As DateTime)

Try
Using myConnection As New SqlConnection(AppConfiguration.ConnectionString)
Dim myCommand As SqlCommand = _

New SqlCommand(“sprocExceptionInsertSingleItem”, myConnection)
myCommand.CommandType = CommandType.StoredProcedure

myCommand.Parameters.AddWithValue(“@bookingObjectId”, bookingObjectId)
myCommand.Parameters.AddWithValue(“@exceptionDate”, exceptionDate)

myConnection.Open()
myCommand.ExecuteNonQuery()
myConnection.Close()

End Using
Catch ex As Exception
Throw

End Try
End Sub

Public Shared Sub DeleteException(ByVal id As Integer)
Try
Using myConnection As New SqlConnection(AppConfiguration.ConnectionString)
Dim myCommand As SqlCommand = _

New SqlCommand(“sprocExceptionDeleteSingleItem”, myConnection)
myCommand.CommandType = CommandType.StoredProcedure

myCommand.Parameters.AddWithValue(“@id”, id)

myConnection.Open()
myCommand.ExecuteNonQuery()
myConnection.Close()

End Using
Catch ex As Exception
Throw

End Try
End Sub

❑ This is the implementation for the three methods that create, delete and select the
exceptions. The code should be familiar to you because it is identical to other data
access code you have seen so far.

49

Modifying the Appointment Booking System

749516 bc10.qxp 2/9/06 11:50 AM Page 49

Changing the User Interface
With the changes in the database and the Visual Basic code in the business and data access layers done,
the next step is to change the Management section. To manage the exceptions for a booking object, you’ll
need to modify the page that allows you to insert or update a booking object.

1. Open CreateUpdateBookingObject.aspx.and add a new row to the bottom of the HTML table.

2. In the second cell of this row, add a GridView control. Bind this GridView to a new
ObjectDataSource with the following specifications:

Property Name Value

Id odsExceptions

TypeName BookingObjectManager

DeleteMethod DeleteException

SelectMethod GetExceptionList

3. Connect the SelectParameter for the Select method to a query string called Id and add a
DeleteParameter for the DeleteException method. The code for the ObjectDataSource
should end up like this:

<asp:ObjectDataSource ID=”odsExceptions” runat=”server”
DeleteMethod=”DeleteException”
SelectMethod=”GetExceptionList” TypeName=”BookingObjectManager”>

<SelectParameters>
<asp:QueryStringParameter Name=”bookingObjectId” QueryStringField=”Id”

Type=”Int32” />
</SelectParameters>
<DeleteParameters>
<asp:Parameter Name=”id” Type=”Int32” />

</DeleteParameters>
</asp:ObjectDataSource>

4. Set the DataKeyNames property of the GridView to Id and check Enable Deleting on the control’s
Smart Tag dialog. The code for the GridView should end up like this:

<asp:GridView ID=”GridView1” runat=”server” DataSourceID=”odsExceptions”
DataKeyNames=”Id”>

<Columns>
<asp:CommandField ShowDeleteButton=”True” />

</Columns>
</asp:GridView>

5. From the Toolbox, drag a Calendar and a Button right below the GridView. Rename the but-
ton to btnInsertNewExceptionDate. The calendar is used to insert new exception dates for
the booking object. In the Click handler for the button, add the following code:

Protected Sub btnInsertNewExceptionDate_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnInsertNewExceptionDate.Click

50

Chapter 10

749516 bc10.qxp 2/9/06 11:50 AM Page 50

If Calendar1.SelectedDate <> DateTime.MinValue Then
BookingObjectManager.CreateException(_

Convert.ToInt32(Request.QueryString.Get(“Id”)), Calendar1.SelectedDate)
GridView1.DataBind()

End If
End Sub

❑ This code gets the exception date from the calendar and passes it to CreateException,
together with the ID of the booking object.

6. Since creating an exception requires the ID of a booking object, it’s a good idea to hide the calen-
dar and the button when inserting a new booking object. After all, when inserting a new object,
its ID is not available yet. To hide these controls, add the following code to the Else clause at
the end of Page_Load:

Else
litHeading.Text = “Create new “ & AppConfiguration.BookingObjectNameSingular
Calendar1.Visible = False
btnInsertNewExceptionDate.Visible = False

End If

7. Save all your pages and open the Appointment Booking System in a browser, go to the
Management section and edit a booking object. You won’t see any exception dates yet, but you
can add one by selecting the date on the calendar. Then click the button to insert the exception
in the database. When the page reloads, you’ll see the new exception date appear in the
GridView.

8. To see if it all worked correctly, go to the Availability Checker and select the date you inserted in
step 7. If everything worked fine, the entire day should not be available for the booking object
you changed in step 7.

51

Modifying the Appointment Booking System

749516 bc10.qxp 2/9/06 11:50 AM Page 51

749516 bc10.qxp 2/9/06 11:50 AM Page 52

11
Modifying the Greeting Card

Application

The code you have seen in Chapter 11 just scratches the surface of what’s possible with GDI+ in
.NET. There are many classes and methods that enable you to fulfill all your drawing needs. The
Graphics class alone has almost 70 methods that allow you to draw rectangles, curves, bezier
shapes, lines, pies, and so on. You’ll find many more classes and useful methods, properties, and
enumerations in the important drawing namespaces like System.Drawing, System.Drawing
.Drawing2D, System.Drawing.Imaging, and System.Drawing.Text. With these namespaces
you could enhance the Toolkit with the following features:

❑ Expand the Toolkit’s Imaging class with a method called AddImageToImage that places
an image on top of anther image. This is useful when you want to add your company’s
logo to each outgoing image, for example.

❑ Add a method to the Imaging class called AddWatermark. This method can do the same
as the AddImageToImage that was just mentioned, but in the AddWatermark you could
make the image more or less transparent.

❑ Add methods that give you finer control over the text being added to images. For example,
you could create overloads or separate methods that can underline text, or make it semi-
transparent so it doesn’t disturb the image too much. This is a great enhancement if you
want to protect your images with a small copyright notice.

❑ Add drop shadow support to the AddTextToImage method. Using a tiny drop shadow
effect on the text that is added to the image can make a big difference in how the text looks.

In addition to changing the Toolkit, you can also change the Greeting Card application. Since it’s
just built to showcase the possibilities of GDI+ and the generic Toolkit, the application lacks a lot
of features that you’d expect from a true Greeting Card application. Besides building user controls
to implement the behavior suggested in the previous list, you could enhance the Greeting Card
application with the following features:

❑ Write clean-up code in Session_Start or at a specified interval that cleans up the Temp
folder. Right now, the application leaves behind many temporary images in that folder
that will fill up your server’s hard drive in no time. You could write code that uses the
System.IO namespace to delete all images that are older than an hour or so.

749516 bc11.qxp 2/9/06 11:35 AM Page 53

❑ Implement a Profile system. Right now, the application is accessible for everyone. It could be
interesting to limit access to the system to known users with a subscription only. This way, you
can track the way they use the application, how often cards are sent, and so on.

❑ Provide default image templates. In the current implementation, the user has to upload a custom
file. However, for some users it would be easier if they could choose a ready-made template
from a list.

As you can see, there are many ways in which the Greeting Card application and the Toolkit can be
enhanced. To help you get started, the following walkthrough guides you through implementing two of
these enhancements: adding images on top of other images, and adding a drop-shadow to the text.
Remember, the code for these modifications is available on the companion CD, so you don’t have to type
it in yourself.

Adding a Drop Shadow to the Text
When you first think about adding a drop shadow to text, you may think it’s a complex operation
involving calculations of light direction, distance, and so on. However, in reality it’s quite easy to do. All
you need to do is draw the same text in a black font on the same image, and move it a couple of pixels to
the right and to the bottom of the original text (or in any other direction). If you draw the text behind the
original text, you’ll only see the edges of the black text, so it looks like a drop shadow. To add this effect
to the Greeting Card application, carry out the following steps:

1. Open the file Imaging.vb in the Toolkit folder, create a copy of the method AddTextToImage
that accepts an input and an output file and remove all the implementation code.

2. Inside the empty body, add the following code:

AddTextToImage (fileNameIn, fileNameOut, myFont, fontColor, textLocation, _
textToAdd, False)

❑ This new overloaded method ensures that existing code that doesn’t know about the
new drop shadow feature won’t break. Notice the additional False parameter at the
end of the method call. This value is passed to the AddTextToImage method that you’ll
modify in the next step to ensure that existing code can still call the default
AddTextToImage implementation without a drop shadow effect.

3. Next, add a new Boolean parameter to the original AddTextToImage method and call it
addDropShadow. The method signature should end up like this:

Public Shared Sub AddTextToImage(ByVal fileNameIn As String, _
ByVal fileNameOut As String, ByVal myFont As Font, ByVal fontColor As Color,
ByVal textLocation As Point, ByVal textToAdd As String, _
ByVal addDropShadow As Boolean)

4. Inside this method, locate the line that starts with Dim myBrush As SolidBrush. Right before
that line, add the following code:

Dim myDropShadowBrush As SolidBrush = New SolidBrush(Color.Black)
myGraphics.DrawString(textToAdd, myFont, myDropShadowBrush, _

New Point(textLocation.X + 4, textLocation.Y + 4), myStringFormat)

54

Chapter 11

749516 bc11.qxp 2/9/06 11:35 AM Page 54

❑ It’s important to draw the drop shadow text before the original text is drawn, so the
shadow appears to be behind the original text. Notice that the X and Y properties are
increased by 4 to make the shadow 4 pixels wide and tall.

5. To allow a user to determine whether the shadow must be added or not, add an <asp:CheckBox>
control to the AddText user control right below the Color drop-down in its own table row. Name
the checkbox chkAddDropShadow and place some text in front of it describing its purpose. Give
the table row an ID of rowShadow and make sure its runat attribute is set to server and its
Visible property is set to False.

6. Locate the AddText method in the code-behind of the user control and add the Checked value
of the checkbox as the last parameter to the call to Toolkit.Imaging.AddTextToImage. Your
code should end up like this:

Toolkit.Imaging.AddTextToImage(Server.MapPath(FileName), _
Server.MapPath(TempFileName), aFont, myColor, _
textLocation, txtTextToAdd.Text, chkAddDropShadow.Checked)

7. In the lstFontName_SelectedIndexChanged method, add code that sets the Visible property
of rowShadow to True, similar to how the other rows are made visible.

8. View the page in your browser and when you’re adding text, make sure to tick the drop shadow
checkbox. When the page refreshes, you’ll notice that you now have a drop shadow behind the text.

Adding a Logo to the Uploaded Image
The next modification to the Toolkit and the Greeting Cards application is adding a logo to the image
that the user uploaded. This logo is placed at the upper-left corner of the uploaded image, but of course
you can change the location if you want. To add the image, make sure you have a file called
WroxLogo.gif in the Images folder of your application and then perform the following steps:

1. Inside the file Imaging.vb add a new method with the following signature:

Public Shared Sub AddLogoToImage(ByVal fileNameIn As String,
ByVal fileNameOut As String, ByVal fileNameLogo As String)

2. Within the method’s body, add the following code:

Public Shared Sub AddLogoToImage(ByVal fileNameIn As String, _
ByVal fileNameOut As String, ByVal fileNameLogo As String)

Dim myGraphics As Graphics = Nothing
Dim mySourceBitmap As Bitmap = Nothing
Dim myTargetBitmap As Bitmap = Nothing
Dim myLogoBitmap As Bitmap = Nothing

Try
mySourceBitmap = New Bitmap(fileNameIn)
myTargetBitmap = New Bitmap(mySourceBitmap.Width, mySourceBitmap.Height)
myLogoBitmap = New Bitmap(fileNameLogo)

myGraphics = Graphics.FromImage(myTargetBitmap)

myGraphics.InterpolationMode = Drawing2D.InterpolationMode.HighQualityBicubic
myGraphics.SmoothingMode = Drawing2D.SmoothingMode.None

myGraphics.DrawImage(mySourceBitmap, New Rectangle(0, 0, _

55

Modifying the Greeting Card Application

749516 bc11.qxp 2/9/06 11:35 AM Page 55

mySourceBitmap.Width, mySourceBitmap.Height), 0, 0, _
mySourceBitmap.Width, mySourceBitmap.Height, GraphicsUnit.Pixel)

myGraphics.DrawImage(myLogoBitmap, New Rectangle(5, 5, myLogoBitmap.Width, _
myLogoBitmap.Height), 0, 0, _
myLogoBitmap.Width, myLogoBitmap.Height, GraphicsUnit.Pixel)

mySourceBitmap.Dispose()
myTargetBitmap.Save(fileNameIn)

Catch ex As Exception
Throw

Finally
If myTargetBitmap IsNot Nothing Then
myTargetBitmap.Dispose()

End If
If mySourceBitmap IsNot Nothing Then
mySourceBitmap.Dispose()

End If
If myLogoBitmap IsNot Nothing Then
myLogoBitmap.Dispose()

End If
If myGraphics IsNot Nothing Then
myGraphics.Dispose()

End If
End Try

End Sub

❑ This code performs a few actions. First, it reads in the original file. It then creates a new
Graphics object that has the same dimensions as the original file. The first call to
DrawImage copies the bitmap from the original file onto the new bitmap. This is neces-
sary so the original bitmap can be disposed, so the original file can be overwritten with
the Save method at the end of the code.

❑ The second call to DrawImage copies the logo bitmap from myLogoBitmap onto the tar-
get bitmap using the same code you saw in the CropImage method. It copies the entire
bitmap held in myLogoBitmap and places it in the upper-left corner of the target
bitmap.

3. The final step is to modify the SelectImage control so it also calls the AddLogoToImage
method you just created. The best place to do this is inside the btnUpload_Click method, right
after the call to ResizeImage. Add the following highlighted code in btnUpload_Click:

Toolkit.Imaging.ResizeImage(Server.MapPath(FileName), _
AppConfiguration.MaxImageWidth, AppConfiguration.MaxImageHeight)

Toolkit.Imaging.AddLogoToImage(Server.MapPath(FileName), _
Server.MapPath(FileName), Server.MapPath(“~/Images/WroxLogo.gif”))

imgUploaded.ImageUrl = FileName

❑ This adds the logo to the image right after it has been resized to the maximum dimen-
sions. Server.MapPath is used to translate the virtual path ~/Images/WroxLogo.gif
into the physical location of the logo.

4. Open up Default.aspx in your browser and upload an image. When the image is displayed, it
now has a small logo in the upper-left corner.

56

Chapter 11

749516 bc11.qxp 2/9/06 11:35 AM Page 56

12
Modifying the Bug Base

The Bug Base application presented in this chapter, useful as it may be now, most likely won’t
have all the functionality you require. Being a starter kit, it does not contain all the bells and whistles
you may need in day-to-day bug tracking. Some of the enhancements you can make include:

❑ E-mail Tracking: Get alerts by e-mail whenever the status of a bug changes.

❑ My Bugs: A page that lists all the bugs you logged or are tracking through e-mail.

❑ Bug Assignments: Allows a manager to assign a bug to a developer to fix it. Assigned
bugs could show up on the My Bugs page, for instance.

❑ An HTML Editor: You can deploy the FCKeditor you have seen in previous chapters to
allow your users to enter formatted data.

Another enhancement that can be made to the Bug Base is to allow your users to upload files. This
can be very useful if you want them to upload screen shots, error logs, and other related files.
Having a screen shot of the error message or other relevant information about the application’s
state at the time of the error can be critical in reproducing bugs. The next section of this chapter
walks you through the changes you need to make to implement the file upload feature.

You should start by modifying the Bug table and the stored procedure that inserts the bug in the
database. Then you need to change the Bug and the BugManagerDB classes. Finally, you should
modify the AddEditBug.aspx page. To implement the changes, follow these steps:

1. In Visual Web Developer open the Database Explorer by choosing View➪Database Explorer.
Locate the BugBase database under Data Connections. If the database is not listed, right
click Data Connections, choose Add Connection, and browse to BugBase.mdf in the
App_Data folder. Next, expand Tables, right click the Bug table, and choose Open Table
Definition. This brings up the database table designer.

2. Add a new column called Attachment. Set its data type to nvarchar(255) and leave the
Allow Nulls checkbox unchecked. You can save the changes and close the table designer.

3. Next, expand the Stored Procedures node and locate the procedure sprocBugInsert
UpdateSingleItem. Add a parameter called @attachment with a type of nvarchar(255)

749516 bc12.qxp 2/9/06 11:36 AM Page 57

and then change both the Insert and Update parts of the procedure so they correctly save the
attachment in the database.

4. Open the stored procedure sprocBugSelectSingleItem and add support for the attachment
by adding Bug.Attachment to the SELECT list.

5. Repeat step 4, but this time add the column to the SELECT list of the procedure sprocBug
SelectList.

6. Open the Bug.vb file in the BusinessLogic folder and add a private field called _attachment,
right below the field _status. Set its type to String and its initial value to String.Empty.

7. In the Public Properties region add a public property called Attachment, similar to the Title
property. Your property should end up like this:

Public Property Attachment() As String
Get
Return _attachment

End Get
Set(ByVal value As String)
_attachment = value

End Set
End Property

❑ This is the only change you need to make in the business layer.

8. You’ll need to make three changes to the data access layer: two in the methods that retrieve the
bug (GetBug and GetBugList) and one in the method that saves the bug in the database. Open
the file BugManager.vb and locate the GetBug method. Right below the line that starts with
theBug.Status add the following lines of code:

If Not myReader.IsDBNull(myReader.GetOrdinal(“Attachment”)) Then
theBug.Attachment = myReader.GetString(_

myReader.GetOrdinal(“Attachment”))
End If

9. Repeat step 8, but this time add the line of code in the GetBugList method right below the line
that starts with theBug.Status.

10. The final change you need to make is in the InsertUpdateBug method. Add an additional
parameter to the SqlCommand when the Attachment property of the bug no longer contains an
empty string:

myCommand.Parameters.AddWithValue(“@statusId”, theBug.Status.Value)
If Not theBug.Attachment = String.Empty Then
myCommand.Parameters.AddWithValue(“@attachment”, theBug.Attachment)

Else
myCommand.Parameters.AddWithValue(“@attachment”, DBNull.Value)

End If

With these changes, the database, the data access layer, and the business layer now support an attach-
ment for the bug. The final change you need to make is in the AddEditBug page.

1. Open the page AddEditBug.aspx from the Bugs folder, switch to Design View if necessary and
add a new table row right above the Save and Cancel buttons.

58

Chapter 12

749516 bc12.qxp 2/9/06 11:36 AM Page 58

2. Inside the first cell of the table, type the text Attachment.

3. From the Toolbox, drag a FileUpload control, a CustomValidator, and a Hyperlink from the
Toolbox into the second cell. Give the Hyperlink an ID of lnkAttachment, set its Visible
property to False, its Text property to View Attachment, and its target to _blank. Set the
ErrorMessage of the CustomValidator to This is not a valid attachment, and its
Display property to Dynamic.

4. Double-click the Save button to switch to the btnSave_Click method in the code-behind of the
page.

5. Right before the line that starts with Page.Validate(), add code that validates the uploaded
file:

If FileUpload1.HasFile Then
‘ Validate the extension
Dim fileName As String = FileUpload1.PostedFile.FileName.ToLower()
If Not fileName.EndsWith(“.jpg”) _

AndAlso Not fileName.EndsWith(“doc”) _
AndAlso Not fileName.EndsWith(“.gif”) Then

CustomValidator1.IsValid = False
End If

End If
Page.Validate()

6. Next, add the code that saves the uploaded file to disk right before the call to
InsertUpdateBug:

Try
‘ Now save the attachment, if any
If FileUpload1.HasFile Then
Dim newFileName As String = “~/Uploads/” & Guid.NewGuid.ToString() & _

System.IO.Path.GetExtension(FileUpload1.PostedFile.FileName)
FileUpload1.SaveAs(Server.MapPath(newFileName))
myBug.Attachment = newFileName

End If
myBugManager.InsertUpdateBug(myBug)

7. This code tries to save the attachment in a folder called Uploads, so you’ll have to create that
folder first. To do so, right click the project in the Solution Explorer and choose Add
Folder➪New Folder. You may also need to set security permissions on this folder for the
account used by the web server. Refer to Chapter 5 for instructions on how to do this.

8. Still in the code-behind for the AddEditBug.aspx page, add the following code to the end of the
code on the LoadData method that loads an existing bug from the database:

Me.Title = “Edit Bug #” + bugId.ToString()
btnSave.Text = “Update bug”
‘ Display the attachment when available:
If Not myBug.Attachment = String.Empty Then
lnkAttachment.NavigateUrl = myBug.Attachment
lnkAttachment.Visible = True
FileUpload1.Visible = False

End If
Else

59

Modifying the Bug Base

749516 bc12.qxp 2/9/06 11:36 AM Page 59

Now when you file a new bug, you can upload a new attachment by clicking the Browse button. The
attachment can be viewed on the AddEditBug.aspx page when you edit an existing bug. If you want,
you can also add support for the attachment to the ViewBug page so it can be viewed from that page as
well. The code required for that change is almost the same as the code shown in step 8.

You can also use the UploadHandler class that you saw in the Chapter 11 to make uploading the file
and checking the extensions even easier.

60

Chapter 12

749516 bc12.qxp 2/9/06 11:36 AM Page 60

